Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 40(12): e106393, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33938017

RESUMO

Antibody class switch recombination (CSR) is a locus-specific genomic rearrangement mediated by switch (S) region transcription, activation-induced cytidine deaminase (AID)-induced DNA breaks, and their resolution by non-homologous end joining (NHEJ)-mediated DNA repair. Due to the complex nature of the recombination process, numerous cofactors are intimately involved, making it important to identify rate-limiting factors that impact on DNA breaking and/or repair. Using an siRNA-based loss-of-function screen of genes predicted to encode PHD zinc-finger-motif proteins, we identify the splicing factor Phf5a/Sf3b14b as a novel modulator of the DNA repair step of CSR. Loss of Phf5a severely impairs AID-induced recombination, but does not perturb DNA breaks and somatic hypermutation. Phf5a regulates NHEJ-dependent DNA repair by preserving chromatin integrity to elicit optimal DNA damage response and subsequent recruitment of NHEJ factors at the S region. Phf5a stabilizes the p400 histone chaperone complex at the locus, which in turn promotes deposition of H2A variant such as H2AX and H2A.Z that are critical for the early DNA damage response and NHEJ, respectively. Depletion of Phf5a or p400 blocks the repair of both AID- and I-SceI-induced DNA double-strand breaks, supporting an important contribution of this axis to programmed as well as aberrant recombination.


Assuntos
DNA Helicases/genética , Reparo do DNA , Proteínas de Ligação a DNA/genética , Histonas/genética , Proteínas de Ligação a RNA/genética , Transativadores/genética , Animais , Linfócitos B , Linhagem Celular , Humanos , Switching de Imunoglobulina , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/genética , Recombinação Genética
2.
Biosci Biotechnol Biochem ; 86(12): 1605-1614, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36130200

RESUMO

Many useful natural products are usually screened based on their biological activities. On the other hand, various natural products can be detected based on their physicochemical properties. We have already reported the isolation and characterization of mangromicins from a cultural broth of Lechevalieria aerocolonigenes K10-0216 using physicochemical screening. In this report, we have conducted the mass spectrometry-based screening of new mangromicin analogs based on the neutral loss pattern originated from the unique cyclopentadecane skeleton of mangromicins. Two novel analogs were detected showing characteristic neutral loss pattern found in eight known mangromicin analogs. We propose the structures of the newly-found analogs based on the mass spectrometric as well as genomic and metabolic pathway data.


Assuntos
Produtos Biológicos , Espectrometria de Massas em Tandem
3.
Mol Cell Proteomics ; 18(2): 169-181, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30266865

RESUMO

In mitosis, chromosomes achieve their characteristic shape through condensation, an essential process for proper segregation of the genome during cell division. A classical model for mitotic chromosome condensation proposes that non-histone proteins act as a structural framework called the chromosome scaffold. The components of the chromosome scaffold, such as DNA topoisomerase IIα (TOP2A) and structural maintenance of chromosomes protein 2 (SMC2), are necessary to generate stable mitotic chromosomes; however, the existence of this scaffold remains controversial. The aim of this study was to determine the protein composition of the chromosome scaffold. We used the DT40 chicken cell line to isolate mitotic chromosomes and extract the associated protein fraction, which could contain the chromosome scaffold. MS revealed a novel component of the chromosome scaffold, bromodomain adjacent to zinc finger 1B (BAZ1B), which was localized to the mitotic chromosome axis. Knocking out BAZ1B caused prophase delay because of altered chromosome condensation timing and mitosis progression errors, and the effect was aggravated if BAZ1A, a BAZ1B homolog, was simultaneously knocked out; however, protein composition of prometaphase chromosomes was normal. Our results suggest that BAZ1 proteins are essential for timely chromosome condensation at mitosis entry. Further characterization of the functional role of BAZ1 proteins would provide new insights into the timing of chromosome condensation.


Assuntos
Cromossomos/metabolismo , Proteômica/métodos , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Técnicas de Inativação de Genes , Células HeLa , Humanos , Mitose , Fatores de Transcrição/genética
4.
PLoS Pathog ; 11(5): e1004909, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26020241

RESUMO

Eukaryotic positive-strand RNA [(+)RNA] viruses are intracellular obligate parasites replicate using the membrane-bound replicase complexes that contain multiple viral and host components. To replicate, (+)RNA viruses exploit host resources and modify host metabolism and membrane organization. Phospholipase D (PLD) is a phosphatidylcholine- and phosphatidylethanolamine-hydrolyzing enzyme that catalyzes the production of phosphatidic acid (PA), a lipid second messenger that modulates diverse intracellular signaling in various organisms. PA is normally present in small amounts (less than 1% of total phospholipids), but rapidly and transiently accumulates in lipid bilayers in response to different environmental cues such as biotic and abiotic stresses in plants. However, the precise functions of PLD and PA remain unknown. Here, we report the roles of PLD and PA in genomic RNA replication of a plant (+)RNA virus, Red clover necrotic mosaic virus (RCNMV). We found that RCNMV RNA replication complexes formed in Nicotiana benthamiana contained PLDα and PLDß. Gene-silencing and pharmacological inhibition approaches showed that PLDs and PLDs-derived PA are required for viral RNA replication. Consistent with this, exogenous application of PA enhanced viral RNA replication in plant cells and plant-derived cell-free extracts. We also found that a viral auxiliary replication protein bound to PA in vitro, and that the amount of PA increased in RCNMV-infected plant leaves. Together, our findings suggest that RCNMV hijacks host PA-producing enzymes to replicate.


Assuntos
Nicotiana/virologia , Ácidos Fosfatídicos/metabolismo , Fosfolipase D/metabolismo , Folhas de Planta/virologia , RNA de Plantas/genética , Tombusviridae/fisiologia , Replicação Viral , Western Blotting , Inativação Gênica , Imunoprecipitação , Fosfolipase D/antagonistas & inibidores , Fosfolipase D/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
J Proteome Res ; 15(12): 4709-4721, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27748110

RESUMO

Connective tissues such as tendon, ligament and cartilage are mostly composed of extracellular matrix (ECM). These tissues are insoluble, mainly due to the highly cross-linked ECM proteins such as collagens. Difficulties obtaining suitable samples for mass spectrometric analysis render the application of modern proteomic technologies difficult. Complete solubilization of them would not only elucidate protein composition of normal tissues but also reveal pathophysiology of pathological tissues. Here we report complete solubilization of human Achilles tendon and yellow ligament, which is achieved by chemical digestion combined with successive protease treatment including elastase. The digestion mixture was subjected to liquid chromatography-mass spectrometry. The low specificity of elastase was overcome by accurate mass analysis achieved using FT-ICR-MS. In addition to the detailed proteome of both tissues, we also quantitatively determine the major protein composition of samples, by measuring peak area of some characteristic peptides detected in tissue samples and in purified proteins. As a result, differences between human Achilles tendon and yellow ligament were elucidated at molecular level.


Assuntos
Tendão do Calcâneo/química , Tecido Conjuntivo/química , Matriz Extracelular/química , Ligamentos/química , Proteoma/análise , Cromatografia Líquida , Humanos , Espectrometria de Massas , Peptídeo Hidrolases/metabolismo , Proteômica/métodos , Solubilidade
6.
PLoS Pathog ; 10(11): e1004505, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25411849

RESUMO

The formation of virus movement protein (MP)-containing punctate structures on the cortical endoplasmic reticulum is required for efficient intercellular movement of Red clover necrotic mosaic virus (RCNMV), a bipartite positive-strand RNA plant virus. We found that these cortical punctate structures constitute a viral replication complex (VRC) in addition to the previously reported aggregate structures that formed adjacent to the nucleus. We identified host proteins that interacted with RCNMV MP in virus-infected Nicotiana benthamiana leaves using a tandem affinity purification method followed by mass spectrometry. One of these host proteins was glyceraldehyde 3-phosphate dehydrogenase-A (NbGAPDH-A), which is a component of the Calvin-Benson cycle in chloroplasts. Virus-induced gene silencing of NbGAPDH-A reduced RCNMV multiplication in the inoculated leaves, but not in the single cells, thereby suggesting that GAPDH-A plays a positive role in cell-to-cell movement of RCNMV. The fusion protein of NbGAPDH-A and green fluorescent protein localized exclusively to the chloroplasts. In the presence of RCNMV RNA1, however, the protein localized to the cortical VRC as well as the chloroplasts. Bimolecular fluorescence complementation assay and GST pulldown assay confirmed in vivo and in vitro interactions, respectively, between the MP and NbGAPDH-A. Furthermore, gene silencing of NbGAPDH-A inhibited MP localization to the cortical VRC. We discuss the possible roles of NbGAPDH-A in the RCNMV movement process.


Assuntos
Cloroplastos , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora) , Nicotiana , Proteínas de Plantas , Tombusviridae/fisiologia , Replicação Viral/fisiologia , Cloroplastos/enzimologia , Cloroplastos/genética , Cloroplastos/virologia , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/biossíntese , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , RNA Viral/genética , RNA Viral/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/virologia
7.
Proc Natl Acad Sci U S A ; 110(36): 14628-33, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23959878

RESUMO

N-glycosylation is a major posttranslational modification that endows proteins with various functions. It is established that N-glycans are essential for the correct folding and stability of some enzymes; however, the actual effects of N-glycans on their activities are poorly understood. Here, we show that human α-l-iduronidase (hIDUA), of which a dysfunction causes accumulation of dermatan/heparan sulfate leading to mucopolysaccharidosis type I, uses its own N-glycan as a substrate binding and catalytic module. Structural analysis revealed that the mannose residue of the N-glycan attached to N372 constituted a part of the substrate-binding pocket and interacted directly with a substrate. A deglycosylation study showed that enzyme activity was highly correlated with the N-glycan attached to N372. The kinetics of native and deglycosylated hIDUA suggested that the N-glycan is also involved in catalytic processes. Our study demonstrates a previously unrecognized function of N-glycans.


Assuntos
Iduronidase/química , Iduronidase/metabolismo , Modelos Moleculares , Polissacarídeos/química , Polissacarídeos/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Biocatálise , Dicroísmo Circular , Cristalografia por Raios X , Dermatan Sulfato/metabolismo , Eletroforese em Gel de Poliacrilamida , Heparitina Sulfato/metabolismo , Humanos , Iduronidase/genética , Cinética , Manose/química , Manose/metabolismo , Dados de Sequência Molecular , Mucopolissacaridose I/enzimologia , Mucopolissacaridose I/metabolismo , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
8.
Proc Natl Acad Sci U S A ; 110(40): 15892-7, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24043811

RESUMO

The Huisgen cycloaddition of azides and alkynes, accelerated by target biomolecules, termed "in situ click chemistry," has been successfully exploited to discover highly potent enzyme inhibitors. We have previously reported a specific Serratia marcescens chitinase B (SmChiB)-templated syn-triazole inhibitor generated in situ from an azide-bearing inhibitor and an alkyne fragment. Several in situ click chemistry studies have been reported. Although some mechanistic evidence has been obtained, such as X-ray analysis of [protein]-["click ligand"] complexes, indicating that proteins act as both mold and template between unique pairs of azide and alkyne fragments, to date, observations have been based solely on "postclick" structural information. Here, we describe crystal structures of SmChiB complexed with an azide ligand and an O-allyl oxime fragment as a mimic of a click partner, revealing a mechanism for accelerating syn-triazole formation, which allows generation of its own distinct inhibitor. We have also performed density functional theory calculations based on the X-ray structure to explore the acceleration of the Huisgen cycloaddition by SmChiB. The density functional theory calculations reasonably support that SmChiB plays a role by the cage effect during the pretranslation and posttranslation states of selective syn-triazole click formation.


Assuntos
Azidas/química , Quitinases/química , Química Click/métodos , Modelos Moleculares , Oximas/química , Serratia marcescens/enzimologia , Triazóis/química , Azidas/metabolismo , Quitinases/antagonistas & inibidores , Quitinases/metabolismo , Cristalização , Estrutura Molecular , Oximas/metabolismo , Teoria Quântica
9.
J Virol ; 87(1): 163-76, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23097452

RESUMO

Eukaryotic positive-strand RNA viruses replicate using the membrane-bound replicase complexes, which contain multiple viral and host components. Virus infection induces the remodeling of intracellular membranes. Virus-induced membrane structures are thought to increase the local concentration of the components that are required for replication and provide a scaffold for tethering the replicase complexes. However, the mechanisms underlying virus-induced membrane remodeling are poorly understood. RNA replication of red clover necrotic mosaic virus (RCNMV), a positive-strand RNA plant virus, is associated with the endoplasmic reticulum (ER) membranes, and ER morphology is perturbed in RCNMV-infected cells. Here, we identified ADP ribosylation factor 1 (Arf1) in the affinity-purified RCNMV RNA-dependent RNA polymerase fraction. Arf1 is a highly conserved, ubiquitous, small GTPase that is implicated in the formation of the coat protein complex I (COPI) vesicles on Golgi membranes. Using in vitro pulldown and bimolecular fluorescence complementation analyses, we showed that Arf1 interacted with the viral p27 replication protein within the virus-induced large punctate structures of the ER membrane. We found that inhibition of the nucleotide exchange activity of Arf1 using the inhibitor brefeldin A (BFA) disrupted the assembly of the viral replicase complex and p27-mediated ER remodeling. We also showed that BFA treatment and the expression of dominant negative Arf1 mutants compromised RCNMV RNA replication in protoplasts. Interestingly, the expression of a dominant negative mutant of Sar1, a key regulator of the biogenesis of COPII vesicles at ER exit sites, also compromised RCNMV RNA replication. These results suggest that the replication of RCNMV depends on the host membrane traffic machinery.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Arabidopsis/virologia , Interações Hospedeiro-Patógeno , Nicotiana/virologia , Tombusviridae/fisiologia , Proteínas Virais/metabolismo , Replicação Viral , Centrifugação , Retículo Endoplasmático/virologia , Fluorescência , Ligação Proteica , Mapeamento de Interação de Proteínas
10.
Nat Cell Biol ; 9(1): 64-71, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17143267

RESUMO

DNA methylation is an important means of epigenetic gene regulation and must be carefully controlled as a prerequisite for normal early embryogenesis. Although global demethylation occurs soon after fertilization, it is not evenly distributed throughout the genome. Genomic imprinting and epigenetic asymmetry between parental genomes, that is, delayed demethylation of the maternal genome after fertilization, are clear examples of the functional importance of DNA methylation. Here, we show that PGC7/Stella, a maternal factor essential for early development, protects the DNA methylation state of several imprinted loci and epigenetic asymmetry. After determining that PGC7/Stella binds to Ran binding protein 5 (RanBP5; a nuclear transport shuttle protein), mutant versions of the two proteins were used to examine exactly when and where PGC7/Stella functions within the cell. It is likely that PGC7/Stella protects the maternal genome from demethylation only after localizing to the nucleus, where it maintains the methylation of several imprinted genes. These results demonstrate that PGC7/Stella is indispensable for the maintenance of methylation involved in epigenetic reprogramming after fertilization.


Assuntos
Metilação de DNA , Desenvolvimento Embrionário/genética , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas/fisiologia , Animais , Células COS , Linhagem Celular , Núcleo Celular/metabolismo , Chlorocebus aethiops , Proteínas Cromossômicas não Histona , Feminino , Fertilização/genética , Humanos , Masculino , Camundongos , Proteínas/genética , Proteínas/metabolismo , Transfecção
11.
Proc Natl Acad Sci U S A ; 108(19): 7920-5, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21518874

RESUMO

Activation-induced cytidine deaminase (AID) is shown to be essential and sufficient to induce two genetic alterations in the Ig loci: class switch recombination (CSR) and somatic hypermutation (SHM). However, it is still unknown how a single-molecule AID differentially regulates CSR and SHM. Here we identified Spt6 as an AID-interacting protein by yeast two-hybrid screening and immunoprecipitation followed by mass spectrometry. Knockdown of Spt6 resulted in severe reduction of CSR in both the endogenous Ig locus in B cells and an artificial substrate in fibroblast cells. Conversely, knockdown of Spt6 did not reduce but slightly enhanced SHM in an artificial substrate in B cells, indicating that Spt6 is required for AID to induce CSR but not SHM. These results suggest that Spt6 is involved in differential regulation of CSR and SHM by AID.


Assuntos
Switching de Imunoglobulina , Hipermutação Somática de Imunoglobulina , Fatores de Transcrição/metabolismo , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Sequência de Bases , Linhagem Celular , Citidina Desaminase/química , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Primers do DNA/genética , Técnicas de Silenciamento de Genes , Histonas/metabolismo , Humanos , Camundongos , Chaperonas Moleculares/antagonistas & inibidores , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido
12.
J Virol ; 86(15): 7836-49, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22593149

RESUMO

Viruses employ an alternative translation mechanism to exploit cellular resources at the expense of host mRNAs and to allow preferential translation. Plant RNA viruses often lack both a 5' cap and a 3' poly(A) tail in their genomic RNAs. Instead, cap-independent translation enhancer elements (CITEs) located in the 3' untranslated region (UTR) mediate their translation. Although eukaryotic translation initiation factors (eIFs) or ribosomes have been shown to bind to the 3'CITEs, our knowledge is still limited for the mechanism, especially for cellular factors. Here, we searched for cellular factors that stimulate the 3'CITE-mediated translation of Red clover necrotic mosaic virus (RCNMV) RNA1 using RNA aptamer-based one-step affinity chromatography, followed by mass spectrometry analysis. We identified the poly(A)-binding protein (PABP) as one of the key players in the 3'CITE-mediated translation of RCNMV RNA1. We found that PABP binds to an A-rich sequence (ARS) in the viral 3' UTR. The ARS is conserved among dianthoviruses. Mutagenesis and a tethering assay revealed that the PABP-ARS interaction stimulates 3'CITE-mediated translation of RCNMV RNA1. We also found that both the ARS and 3'CITE are important for the recruitment of the plant eIF4F and eIFiso4F factors to the 3' UTR and of the 40S ribosomal subunit to the viral mRNA. Our results suggest that dianthoviruses have evolved the ARS and 3'CITE as substitutes for the 3' poly(A) tail and the 5' cap of eukaryotic mRNAs for the efficient recruitment of eIFs, PABP, and ribosomes to the uncapped/nonpolyadenylated viral mRNA.


Assuntos
Regiões 3' não Traduzidas/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Biossíntese de Proteínas/fisiologia , RNA Viral/metabolismo , Tombusviridae/fisiologia , Sistema Livre de Células/metabolismo , Fator de Iniciação 4F em Eucariotos/genética , Fator de Iniciação 4F em Eucariotos/metabolismo , Proteínas de Plantas/genética , Proteínas de Ligação a Poli(A)/genética , Ligação Proteica , RNA Viral/genética , Subunidades Ribossômicas Menores de Eucariotos , Triticum/metabolismo
13.
J Virol ; 86(22): 12091-104, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22933272

RESUMO

Assembly of viral replicase complexes of eukaryotic positive-strand RNA viruses is a regulated process: multiple viral and host components must be assembled on intracellular membranes and ordered into quaternary complexes capable of synthesizing viral RNAs. However, the molecular mechanisms underlying this process are poorly understood. In this study, we used a model virus, Red clover necrotic mosaic virus (RCNMV), whose replicase complex can be detected readily as the 480-kDa functional protein complex. We found that host heat shock proteins Hsp70 and Hsp90 are required for RCNMV RNA replication and that they interact with p27, a virus-encoded component of the 480-kDa replicase complex, on the endoplasmic reticulum membrane. Using a cell-free viral translation/replication system in combination with specific inhibitors of Hsp70 and Hsp90, we found that inhibition of p27-Hsp70 interaction inhibits the formation of the 480-kDa complex but instead induces the accumulation of large complexes that are nonfunctional in viral RNA synthesis. In contrast, inhibition of p27-Hsp90 interaction did not induce such large complexes but rendered p27 incapable of binding to a specific viral RNA element, which is a critical step for the assembly of the 480-kDa replicase complex and viral RNA replication. Together, our results suggest that Hsp70 and Hsp90 regulate different steps in the assembly of the RCNMV replicase complex.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Plantas/virologia , Vírus de RNA/metabolismo , RNA Polimerase Dependente de RNA/química , Tombusviridae/metabolismo , Clonagem Molecular , Retículo Endoplasmático/metabolismo , Inativação Gênica , Microscopia Confocal/métodos , Ligação Proteica , Biossíntese de Proteínas , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/genética , Nicotiana/virologia , Tombusviridae/genética , Replicação Viral
14.
Nucleic Acids Res ; 39(Database issue): D807-14, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21071393

RESUMO

The Ciona intestinalis protein database (CIPRO) is an integrated protein database for the tunicate species C. intestinalis. The database is unique in two respects: first, because of its phylogenetic position, Ciona is suitable model for understanding vertebrate evolution; and second, the database includes original large-scale transcriptomic and proteomic data. Ciona intestinalis has also been a favorite of developmental biologists. Therefore, large amounts of data exist on its development and morphology, along with a recent genome sequence and gene expression data. The CIPRO database is aimed at collecting those published data as well as providing unique information from unpublished experimental data, such as 3D expression profiling, 2D-PAGE and mass spectrometry-based large-scale analyses at various developmental stages, curated annotation data and various bioinformatic data, to facilitate research in diverse areas, including developmental, comparative and evolutionary biology. For medical and evolutionary research, homologs in humans and major model organisms are intentionally included. The current database is based on a recently developed KH model containing 36,034 unique sequences, but for higher usability it covers 89,683 all known and predicted proteins from all gene models for this species. Of these sequences, more than 10,000 proteins have been manually annotated. Furthermore, to establish a community-supported protein database, these annotations are open to evaluation by users through the CIPRO website. CIPRO 2.5 is freely accessible at http://cipro.ibio.jp/2.5.


Assuntos
Ciona intestinalis/metabolismo , Bases de Dados de Proteínas , Proteoma/metabolismo , Sequência de Aminoácidos , Animais , Ciona intestinalis/genética , Ciona intestinalis/crescimento & desenvolvimento , Biologia Computacional , Gráficos por Computador , Perfilação da Expressão Gênica , Genômica , Anotação de Sequência Molecular , Proteoma/química , Proteoma/genética , Proteômica , Integração de Sistemas , Interface Usuário-Computador
15.
Cytokine ; 60(3): 772-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22951300

RESUMO

We previously identified D-dopachrome tautomerase (DDT) as a novel adipokine whose mRNA levels in adipocytes are negatively correlated with obesity-related clinical parameters, and which acts on adipocytes to regulate lipid metabolism. Here we investigated functions of DDT on preadipocytes. Recombinant DDT (rDDT) enhanced both the expression and secretion of interleukin-6 (IL-6) in SGBS cells, a human preadipocyte cell line. Treatment with rDDT increased levels of phosphorylated ERK1/2, but not p38, in SGBS cells, and rDDT-induced IL-6 mRNA expression was attenuated by pretreatment with an ERK inhibitor, U0126. Knockdown of CD74, but not CD44, inhibited rDDT-induced IL-6 mRNA expression in SGBS cells. These results suggested that the rDDT-induced IL-6 expression in preadipocytes occurred through the CD74-ERK pathway. Furthermore, in SGBS cells subjected to adipogenic induction, rDDT decreased the amount of triacylglycerol, number of cells with oil droplets, and levels of mRNA encoding adipocyte marker proteins. Increased expression of CCAAT/enhancer binding protein families and peroxisome proliferator-activated receptor γ2 during adipogenesis was inhibited in the cells treated with rDDT. These results suggested DDT to inhibit adipogenesis by suppressing the expression of genes encoding adipogenic regulators in preadipocytes.


Assuntos
Adipócitos/metabolismo , Adipogenia/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Interleucina-6/metabolismo , Oxirredutases Intramoleculares/metabolismo , Antígenos de Diferenciação de Linfócitos B/genética , Antígenos de Diferenciação de Linfócitos B/metabolismo , Butadienos/farmacologia , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Receptores de Hialuronatos/genética , Interleucina-6/biossíntese , Interleucina-6/genética , Nitrilas/farmacologia , PPAR gama/biossíntese , Fosforilação , Interferência de RNA , RNA Mensageiro/biossíntese , RNA Interferente Pequeno , Proteínas Recombinantes/metabolismo , Triglicerídeos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 68(Pt 11): 1363-6, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23143250

RESUMO

Human lysosomal α-L-iduronidase, whose deficiency causes mucopolysaccharidosis type I, was crystallized using sodium/potassium tartrate and polyethylene glycol 3350 as a precipitant. Using synchrotron radiation, a native data set was collected from a single crystal at 100 K to 2.3 Šresolution. The crystal belonged to space group R3 with unit-cell dimensions of a=b=259.22, c=71.83 Å. To obtain the phase information, mercury-derivative crystals were prepared and a single-wavelength anomalous dispersion (SAD) data set was collected at the Hg peak wavelength. Phase calculation with the single isomorphous replacement with anomalous scattering (SIRAS) method successfully yielded an interpretable electron-density map.


Assuntos
Iduronidase/química , Animais , Células CHO , Cricetinae , Cristalização , Humanos , Mercúrio/química , Difração de Raios X/métodos
17.
J Biol Chem ; 285(13): 9971-9980, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20089862

RESUMO

Lipoate-protein ligase A (LplA) catalyzes the attachment of lipoic acid to lipoate-dependent enzymes by a two-step reaction: first the lipoate adenylation reaction and, second, the lipoate transfer reaction. We previously determined the crystal structure of Escherichia coli LplA in its unliganded form and a binary complex with lipoic acid (Fujiwara, K., Toma, S., Okamura-Ikeda, K., Motokawa, Y., Nakagawa, A., and Taniguchi, H. (2005) J Biol. Chem. 280, 33645-33651). Here, we report two new LplA structures, LplA.lipoyl-5'-AMP and LplA.octyl-5'-AMP.apoH-protein complexes, which represent the post-lipoate adenylation intermediate state and the pre-lipoate transfer intermediate state, respectively. These structures demonstrate three large scale conformational changes upon completion of the lipoate adenylation reaction: movements of the adenylate-binding and lipoate-binding loops to maintain the lipoyl-5'-AMP reaction intermediate and rotation of the C-terminal domain by about 180 degrees . These changes are prerequisites for LplA to accommodate apoprotein for the second reaction. The Lys(133) residue plays essential roles in both lipoate adenylation and lipoate transfer reactions. Based on structural and kinetic data, we propose a reaction mechanism driven by conformational changes.


Assuntos
Escherichia coli/enzimologia , Peptídeo Sintases/química , Monofosfato de Adenosina/química , Animais , Catálise , Bovinos , Cristalografia por Raios X/métodos , Escherichia coli/metabolismo , Ligantes , Modelos Moleculares , Conformação Molecular , Conformação Proteica , Mapeamento de Interação de Proteínas/métodos , Estrutura Terciária de Proteína , Eletricidade Estática , Ácido Tióctico/química , Vitaminas/química
18.
J Biol Chem ; 285(24): 18684-92, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20375021

RESUMO

Aminomethyltransferase, a component of the glycine cleavage system termed T-protein, reversibly catalyzes the degradation of the aminomethyl moiety of glycine attached to the lipoate cofactor of H-protein, resulting in the production of ammonia, 5,10-methylenetetrahydrofolate, and dihydrolipoate-bearing H-protein in the presence of tetrahydrofolate. Several mutations in the human T-protein gene are known to cause nonketotic hyperglycinemia. Here, we report the crystal structure of Escherichia coli T-protein in complex with dihydrolipoate-bearing H-protein and 5-methyltetrahydrofolate, a complex mimicking the ternary complex in the reverse reaction. The structure of the complex shows a highly interacting intermolecular interface limited to a small area and the protein-bound dihydrolipoyllysine arm inserted into the active site cavity of the T-protein. Invariant Arg(292) of the T-protein is essential for complex assembly. The structure also provides novel insights in understanding the disease-causing mutations, in addition to the disease-related impairment in the cofactor-enzyme interactions reported previously. Furthermore, structural and mutational analyses suggest that the reversible transfer of the methylene group between the lipoate and tetrahydrofolate should proceed through the electron relay-assisted iminium intermediate formation.


Assuntos
Aminometiltransferase/química , Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Mutação , Arginina/química , Catálise , Domínio Catalítico , Cristalografia por Raios X/métodos , Análise Mutacional de DNA , Dimerização , Escherichia coli/metabolismo , Ácido Fólico/química , Glicina/química , Hiperglicemia/metabolismo , Iminas/química , Modelos Moleculares
19.
J Virol ; 84(12): 6070-81, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20375154

RESUMO

Replication of positive-strand RNA viruses occurs through the assembly of membrane-associated viral RNA replication complexes that include viral replicase proteins, viral RNA templates, and host proteins. Red clover necrotic mosaic virus (RCNMV) is a positive-strand RNA plant virus with a genome consisting of RNA1 and RNA2. The two proteins encoded by RNA1, a 27-kDa protein (p27) and an 88-kDa protein containing an RNA-dependent RNA polymerase (RdRP) motif (p88), are essential for RCNMV RNA replication. To analyze RCNMV RNA replication complexes, we used blue-native polyacrylamide gel electrophoresis (BN/PAGE), which enabled us to analyze detergent-solubilized large membrane protein complexes. p27 and p88 formed a complex of 480 kDa in RCNMV-infected plants. As a result of sucrose gradient sedimentation, the 480-kDa complex cofractionated with both endogenous template-bound and exogenous template-dependent RdRP activities. The amount of the 480-kDa complex corresponded to the activity of exogenous template-dependent RdRP, which produced RNA fragments by specifically recognizing the 3'-terminal core promoter sequences of RCNMV RNAs, but did not correspond to the activity of endogenous template-bound RdRP, which produced genome-sized RNAs without the addition of RNA templates. These results suggest that the 480-kDa complex contributes to template-dependent RdRP activities. We subjected those RdRP complexes to affinity purification and analyzed their components using two-dimensional BN/sodium dodecyl sulfate-PAGE (BN/SDS-PAGE) and mass spectrometry. The 480-kDa complex contained p27, p88, and possible host proteins, and the original affinity-purified RdRP preparation contained HSP70, HSP90, and several ribosomal proteins that were not detected in the 480-kDa complex. A model for the formation of RCNMV RNA replication complexes is proposed.


Assuntos
Substâncias Macromoleculares/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Tombusviridae/fisiologia , Proteínas Virais/metabolismo , Replicação Viral , Interações Hospedeiro-Parasita , Substâncias Macromoleculares/química , Peso Molecular , Doenças das Plantas/virologia , RNA Viral/genética , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , Moldes Genéticos , Tombusviridae/enzimologia , Tombusviridae/genética , Proteínas Virais/química , Proteínas Virais/genética
20.
Mol Reprod Dev ; 78(7): 488-97, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21656869

RESUMO

Ascidians are hermaphrodites, and most release sperm and eggs nearly simultaneously. Many species, including Halocynthia roretzi and Ciona intestinalis, are self-sterile. We previously reported that the interaction between a 12 EGF-like repeat-containing vitelline-coat (VC) protein, HrVC70, and a sperm GPI-anchored CRISP, HrUrabin, in lipid rafts plays a key role in self-/nonself-recognizable gamete interaction in H. roretzi. On the other hand, we recently identified two pairs of polymorphic genes responsible for self-incompatibility in C. intestinalis by positional cloning: The sperm polycystin 1-like receptors s-Themis-A/B and its fibrinogen-like ligand v-Themis-A/B on the VC. However, it is not known if the orthologs of HrVC70 and HrUrabin also participate in gamete interaction in C. intestinalis since they are from different orders. Here, we tested for a C. intestinalis ortholog (CiUrabin) of HrUrabin by searching the genome database and proteomes of sperm lipid rafts. The identified CiUrabin belongs to the CRISP family, with a PR domain and a GPI-anchor-attachment site. CiUrabin appears to be specifically expressed in the testis and localized at the surface of the sperm head, as revealed by Northern blotting and immunocytochemistry, respectively. The specific interaction between CiVC57, a C. intestinalis ortholog of HrVC70, and CiUrabin was confirmed by Far Western analysis, similarly to the interaction between HrVC70 and HrUrabin. The molecular interaction between CiVC57 and CiUrabin may be involved in the primary binding of sperm to the VC prior to the allorecognition process, mediated by v-Themis-A/B and s-Themis-A/B, during fertilization of C. intestinalis.


Assuntos
Ciona intestinalis/metabolismo , Glicoproteínas de Membrana/metabolismo , Espermatozoides/química , Sequência de Aminoácidos , Animais , Western Blotting , Ciona intestinalis/genética , Proteínas do Ovo/metabolismo , Fertilização , Organismos Hermafroditas/genética , Organismos Hermafroditas/metabolismo , Humanos , Masculino , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Dados de Sequência Molecular , Especificidade de Órgãos , Filogenia , Alinhamento de Sequência , Testículo/química , Testículo/metabolismo , Ultracentrifugação , Membrana Vitelina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA