RESUMO
BACKGROUND: In chronic obstructive pulmonary disease (COPD), exacerbations cause acute inflammatory flare-ups and increase the risk for hospitalization and mortality. Exacerbations are common in all disease stages and are often caused by bacterial infections e.g., non-typeable Heamophilus influenzae (NTHi). Accumulating evidence also associates vitamin D deficiency with the severity of COPD and exacerbation frequency. However, it is still unclear whether vitamin D deficiency when combined with cigarette smoking would worsen and prolong exacerbations caused by repeated infections with the same bacterial strain. METHODS: Vitamin D sufficient (VDS) and deficient (VDD) mice were exposed to nose-only cigarette smoke (CS) for 14 weeks and oropharyngeally instilled with NTHi at week 6, 10 and 14. Three days after the last instillation, mice were assessed for lung function, tissue remodeling, inflammation and immunity. The impact of VDD and CS on inflammatory cells and immunoglobulin (Ig) production was also assessed in non-infected animals while serum Ig production against NTHi and dsDNA was measured in COPD patients before and 1 year after supplementation with Vitamin D3. RESULTS: VDD enhanced NTHi eradication, independently of CS and complete eradication was reflected by decreased anti-NTHi Ig's within the lung. In addition, VDD led to an increase in total lung capacity (TLC), lung compliance (Cchord), MMP12/TIMP1 ratio with a rise in serum Ig titers and anti-dsDNA Ig's. Interestingly, in non-infected animals, VDD exacerbated the CS-induced anti-NTHi Ig's, anti-dsDNA Ig's and inflammatory cells within the lung. In COPD patients, serum Ig production was not affected by vitamin D status but anti-NTHi IgG increased after vitamin D3 supplementation in patients who were Vitamin D insufficient before treatment. CONCLUSION: During repeated infections, VDD facilitated NTHi eradication and resolution of local lung inflammation through production of anti-NTHi Ig, independently of CS whilst it also promoted autoantibodies. In COPD patients, vitamin D supplementation could be protective against NTHi infections in vitamin D insufficient patients. Future research is needed to decipher the determinants of dual effects of VDD on adaptive immunity. TRAIL REGISTRATION: ClinicalTrials, NCT00666367. Registered 23 April 2008, https://www.clinicaltrials.gov/ct2/show/study/NCT00666367 .
Assuntos
Fumar Cigarros/efeitos adversos , Infecções por Haemophilus/complicações , Haemophilus influenzae/imunologia , Pulmão/microbiologia , Pneumonia/complicações , Deficiência de Vitamina D/metabolismo , Animais , Modelos Animais de Doenças , Infecções por Haemophilus/metabolismo , Infecções por Haemophilus/microbiologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/metabolismoRESUMO
BACKGROUND: Chronic obstructive pulmonary disease (COPD) is characterized by a progressive and abnormal inflammatory response in the lungs, mainly caused by cigarette smoking. Animal models exposed to cigarette smoke (CS) are used to mimic human COPD but the use of different CS protocols makes it difficult to compare the immunological and structural consequences of using a nose-only or whole-body CS exposure system. We hypothesized that when using a standardized CS exposure protocol based on particle density and CO (carbon monoxide) levels, the whole-body CS exposure system would generate a more severe inflammatory response than the nose-only system, due to possible sensitization by uptake of CS-components through the skin or via grooming. METHODS: In this study focusing on early COPD, mice were exposed twice daily 5 days a week to CS either with a nose-only or whole-body exposure system for 14 weeks to assess lung function, remodeling and inflammation. RESULTS: At sacrifice, serum cotinine levels were significantly higher in the whole-body (5.3 (2.3-6.9) ng/ml) compared to the nose-only ((2.0 (1.8-2.5) ng/ml) exposure system and controls (1.0 (0.9-1.0) ng/ml). Both CS exposure systems induced a similar degree of lung function impairment, while inflammation was more severe in whole body exposure system. Slightly more bronchial epithelial damage, mucus and airspace enlargement were observed with the nose-only exposure system. More lymphocytes were present in the bronchoalveolar lavage (BAL) and lymph nodes of the whole-body exposure system while enhanced IgA and IgG production was found in BAL and to a lesser extent in serum with the nose-only exposure system. CONCLUSION: The current standardized CS-exposure protocol resulted in a higher internal load of serum cotinine in the whole-body exposure system, which was associated with more inflammation. However, both exposure systems resulted in a similar lung function impairment. Data also highlighted differences between the two models in terms of lung inflammation and remodelling, and potential sensitization to CS. Researchers should be aware of these differences when designing their future studies for an early intervention in COPD.
Assuntos
Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Pulmão/metabolismo , Pneumonia/etiologia , Doença Pulmonar Obstrutiva Crônica/etiologia , Fumaça , Produtos do Tabaco , Animais , Biomarcadores/sangue , Líquido da Lavagem Broncoalveolar/imunologia , Cotinina/sangue , Citocinas/genética , Modelos Animais de Doenças , Imunidade Humoral , Imunoglobulina A/metabolismo , Imunoglobulina G/metabolismo , Exposição por Inalação , Pulmão/imunologia , Pulmão/patologia , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Tecido Linfoide/patologia , Masculino , Camundongos Endogâmicos C57BL , Nariz , Pneumonia/imunologia , Pneumonia/metabolismo , Pneumonia/patologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Fatores de TempoRESUMO
AIMS: Active cigarette smoking is a major risk factor for chronic obstructive pulmonary disease that remains elevated after cessation. Skeletal muscle dysfunction has been well documented after smoking, but little is known about cardiac adaptations to cigarette smoking. The underlying cellular and molecular cardiac adaptations, independent of confounding lifestyle factors, and time course of reversibility by smoking cessation remain unclear. We hypothesized that smoking negatively affects cardiac metabolism and induces local inflammation in mice, which do not readily reverse upon 2-week smoking cessation. METHODS: Mice were exposed to air or cigarette smoke for 14 weeks with or without 1- or 2-week smoke cessation. We measured cardiac mitochondrial respiration by high-resolution respirometry, cardiac mitochondrial density, abundance of mitochondrial supercomplexes by electrophoresis, and capillarization, fibrosis, and macrophage infiltration by immunohistology, and performed cardiac metabolome and lipidome analysis by mass spectrometry. RESULTS: Mitochondrial protein, supercomplex content, and respiration (all p < 0.03) were lower after smoking, which were largely reversed within 2-week smoking cessation. Metabolome and lipidome analyses revealed alterations in mitochondrial metabolism, a shift from fatty acid to glucose metabolism, which did not revert to control upon smoking cessation. Capillary density was not different after smoking but increased after smoking cessation (p = 0.02). Macrophage infiltration and fibrosis (p < 0.04) were higher after smoking but did not revert to control upon smoking cessation. CONCLUSIONS: While cigarette-impaired smoking-induced cardiac mitochondrial function was reversed by smoking cessation, the remaining fibrosis and macrophage infiltration may contribute to the increased risk of cardiovascular events after smoking cessation.
Assuntos
Abandono do Hábito de Fumar , Animais , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miocárdio/patologia , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Remodelação VentricularRESUMO
Malnutrition is estimated to contribute to more than one third of all child deaths, although it is rarely listed as the direct cause. Contributing to more than half of deaths in children worldwide; child malnutrition was associated with 54% of deaths in children in developing countries in 2001. Poverty remains the major contributor to this ill. The vicious cycle of poverty, disease and illness aggravates this situation. Grooming undernourished children causes children to start life at mentally sub optimal levels. This becomes a serious developmental threat. Lack of education especially amongst women disadvantages children, especially as far as healthy practices like breastfeeding and child healthy foods are concerned. Adverse climatic conditions have also played significant roles like droughts, poor soils and deforestation. Sociocultural barriers are major hindrances in some communities, with female children usually being the most affected. Corruption and lack of government interest and investment are key players that must be addressed to solve this problem. A multisectorial approach is vital in tackling this problem. Improvement in government policy, fight against corruption, adopting a horizontal approach in implementing programmes at community level must be recognized. Genetically modified foods to increase food production and to survive adverse climatic conditions could be gateways in solving these problems. Socio cultural peculiarities of each community are an essential base line consideration for the implementation of any nutrition health promotion programs.