Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Fitoterapia ; 165: 105313, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36179899

RESUMO

OBJECTIVE: To investigate changes in the chemical composition of malts under different germination cycles and prepared with different processing methods, thus providing a reference for the clinical application of malt in disease treatment. METHODS: Nine malt samples were analyzed by ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS), and the MS fragmentation pathway of 4 compounds (including hordenine, gramine, N-methyltyramine and catechin) were also analyzed. RESULTS: By database comparison and literature search, we detected 31 compounds in raw barley and 33 compounds in both raw malt and roasted malt. Nonetheless, the most of these 33 compounds were detected higher contents in raw malt than in roasted malt. Besides, we detected 15 compounds in brown malt. At Day1 of germination, 31 compounds were detected in malt, without two alkaloids (representative: hordenine). At Day2-5, 33 compounds were detected, with different contents as shown by the peak area comparison; hordenine had a gradually increasing abundance; and nearly one third of the chemical components in barley increased gradually, one third decreased gradually, and one third tended to be stable. CONCLUSION: Malts under different germination cycles and prepared with different processing methods have varying active ingredients, and especially brown malt exhibits a serious loss of compounds. The tight association between the chemical composition and clinical application of malt offers a basis to the clinically scientific and reasonable selection of Chinese medicinal materials for treatment purposes.


Assuntos
Medicamentos de Ervas Chinesas , Hordeum , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Estrutura Molecular
2.
J Ethnopharmacol ; 273: 113994, 2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-33711439

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Barley maiya from gramineous plants (Hordeum vulgare L.) is obtained from ripe fruits through germination and drying. It is often used to treat diseases associated with high prolactin levels. OBJECTIVE: To investigate the anti-hyperprolactinemia (anti-HPRL) mechanisms of total barley maiya alkaloids (TBMA) and hordenine. METHODS: This experiment included 9 groups: Normal group, TBMA group, hordenine group, TBMA + haloperidol group, TBMA + forskolin group, TBMA + 8-bromo-cAMP group, hordenine + haloperidol group, hordenine + forskolin group, and hordenine + 8-bromo-cAMP group. The prolactin (PRL) concentration in the supernatant and the total cAMP concentration in the cells were detected by ELISA. The expression levels of PRL, dopamine D2 receptor (DRD2) and cAMP/PKA/CREB protein were measured by Western Blot. RESULTS: In the TBMA group and the hordenine group, the PRL level in MMQ cells was significantly decreased, but in GH3 cells there was no change. DRD2 expression level was markedly increased, cAMP concentration was decreased, and the activity of PKA and CREB declined in MMQ cells. Compared with the TBMA group, there was a significant decrease of DRD2 expression level, a remarkable increase of PRL secretion and an increase of cAMP/PKA/CREB expression in MMQ cells within the TBMA + haloperidol group. Compared with the forskolin group, there was no significant change in PRL secretion and cAMP/PKA/CREB expression level in MMQ cells within the TBMA + forskolin group. There was a decrease in PRL secretion and cAMP/PKA/CREB expression level in MMQ cells within the TBMA + 8-bromo-cAMP group compared with the 8-bromo-cAMP group. Compared with the hordenine group, DRD2 expression level was significantly decreased, PRL secretion was markedly increased, and cAMP/PKA/CREB expression level was increased in MMQ cells within the hordenine + haloperidol group. There was no significant change in PRL secretion and cAMP/PKA/CREB expression level in MMQ cells within the hordenine + forskolin group compared with the forskolin group and within the hordenine + 8-bromo-cAMP group compared with the 8-bromo-cAMP group. CONCLUSION: TBMA and hordenine can both play an anti-HPRL role via DRD2, and TBMA can also act on PKA targets to exert its anti-HPRL effect. TBMA and hordenine may be potential treatment strategies for HPRL.


Assuntos
Alcaloides/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Hordeum/química , Prolactina/antagonistas & inibidores , Tiramina/análogos & derivados , Alcaloides/química , Animais , Antieméticos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Colforsina/química , Colforsina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Haloperidol/farmacologia , Ratos , Receptores de Dopamina D2 , Transdução de Sinais , Tiramina/química , Tiramina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA