Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cureus ; 16(5): e59573, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38826869

RESUMO

Herbaspirillum seropedicae is a species of bacteria commonly found in vegetation, but in rare cases, can cause opportunistic infections in human hosts. Infections typically occur due to environmental exposure to the pathogen, such as through agriculture or gardening. However, these incidents typically only involve immunocompromised patients. Our present report describes a case of sepsis secondary to pneumonia in an adult with a history of chronic obstructive pulmonary disease who presented with complaints of shortness of breath and hypoxia. Although initially misidentified as Burkholderia cepacia, blood culture and reference lab eventually confirmed H. seropedicae bacteremia. The patient was admitted for treatment with intravenous antibiotics with significant improvement and subsequent discharge. H. seropedicae is often clinically misidentified due to its rarity. As we observe the increasing pathogenicity of H. seropedicae, clinicians must be better prepared to recognize the symptoms of its infection. Technologies such as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry have proven to be useful in distinguishing H. seropedicae from other similarly presenting species.

2.
J Nucl Med ; 65(5): 775-780, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548349

RESUMO

Tissue-resident macrophages are complementary to proinflammatory macrophages to promote the progression of atherosclerosis. The noninvasive detection of their presence and dynamic variation will be important to the understanding of their role in the pathogenesis of atherosclerosis. The goal of this study was to develop a targeted PET radiotracer for imaging CD163-positive (CD163+) macrophages in multiple mouse atherosclerosis models and assess the potential of CD163 as a biomarker for atherosclerosis in humans. Methods: CD163-binding peptide was identified using phage display and conjugated with a NODAGA chelator for 64Cu radiolabeling ([64Cu]Cu-ICT-01). CD163-overexpressing U87 cells were used to measure the binding affinity of [64Cu]Cu-ICT-01. Biodistribution studies were performed on wild-type C57BL/6 mice at multiple time points after tail vein injection. The sensitivity and specificity of [64Cu]Cu-ICT-01 in imaging CD163+ macrophages upregulated on the surface of atherosclerotic plaques were assessed in multiple mouse atherosclerosis models. Immunostaining, flow cytometry, and single-cell RNA sequencing were performed to characterize the expression of CD163 on tissue-resident macrophages. Human carotid atherosclerotic plaques were used to measure the expression of CD163+ resident macrophages and test the binding specificity of [64Cu]Cu-ICT-01. Results: [64Cu]Cu-ICT-01 showed high binding affinity to U87 cells. The biodistribution study showed rapid blood and renal clearance with low retention in all major organs at 1, 2, and 4 h after injection. In an ApoE-/- mouse model, [64Cu]Cu-ICT-01 demonstrated sensitive and specific detection of CD163+ macrophages and capability for tracking the progression of atherosclerotic lesions; these findings were further confirmed in Ldlr-/- and PCSK9 mouse models. Immunostaining showed elevated expression of CD163+ macrophages across the plaques. Flow cytometry and single-cell RNA sequencing confirmed the specific expression of CD163 on tissue-resident macrophages. Human tissue characterization demonstrated high expression of CD163+ macrophages on atherosclerotic lesions, and ex vivo autoradiography revealed specific binding of [64Cu]Cu-ICT-01 to human CD163. Conclusion: This work reported the development of a PET radiotracer binding CD163+ macrophages. The elevated expression of CD163+ resident macrophages on human plaques indicated the potential of CD163 as a biomarker for vulnerable plaques. The sensitivity and specificity of [64Cu]Cu-ICT-01 in imaging CD163+ macrophages warrant further investigation in translational settings.


Assuntos
Antígenos CD , Antígenos de Diferenciação Mielomonocítica , Aterosclerose , Macrófagos , Tomografia por Emissão de Pósitrons , Receptores de Superfície Celular , Animais , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígenos CD/metabolismo , Aterosclerose/diagnóstico por imagem , Aterosclerose/metabolismo , Macrófagos/metabolismo , Receptores de Superfície Celular/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Radioisótopos de Cobre , Distribuição Tecidual , Compostos Radiofarmacêuticos/farmacocinética
3.
ACS Pharmacol Transl Sci ; 7(1): 285-293, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38230294

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and treatment-refractory malignancies. The lack of an effective screening tool results in the majority of patients being diagnosed at late stages, which underscores the urgent need to develop more sensitive and specific imaging modalities, particularly in detecting occult metastases, to aid clinical decision-making. The tumor microenvironment of PDAC is heavily infiltrated with myeloid-derived suppressor cells (MDSCs) that express C-C chemokine receptor type 2 (CCR2). These CCR2-expressing MDSCs accumulate at a very early stage of metastasis and greatly outnumber PDAC cells, making CCR2 a promising target for detecting early, small metastatic lesions that have scant PDAC cells. Herein, we evaluated a CCR2 targeting PET tracer (68Ga-DOTA-ECL1i) for PET imaging on PDAC metastasis in two mouse models. Positron emission tomography/computed tomography (PET/CT) imaging of 68Ga-DOTA-ECL1i was performed in a hemisplenic injection metastasis model (KI) and a genetically engineered orthotopic PDAC model (KPC), which were compared with 18F-FDG PET concurrently. Autoradiography, hematoxylin and eosin (H&E), and CCR2 immunohistochemical staining were performed to characterize the metastatic lesions. PET/CT images visualized the PDAC metastases in the liver/lung of KI mice and in the liver of KPC mice. Quantitative uptake analysis revealed increased metastasis uptake during disease progression in both models. In comparison, 18F-FDG PET failed to detect any metastases during the time course studies. H&E staining showed metastases in the liver and lung of KI mice, within which immunostaining clearly demonstrated the overexpression of CCR2 as well as CCR2+ cell infiltration into the normal liver. H&E staining, CCR2 staining, and autoradiography also confirmed the expression of CCR2 and the uptake of 68Ga-DOTA-ECL1i in the metastatic foci in KPC mice. Using our novel CCR2 targeted radiotracer 68Ga-DOTA-ECL1i and PET/CT, we demonstrated the sensitive and specific detection of CCR2 in the early PDAC metastases in two mouse models, indicating its potential in future clinical translation.

4.
Cureus ; 15(5): e38671, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37288201

RESUMO

Intestinal intussusception rarely occurs in adults and is challenging to diagnose in the emergency department due to its associated nonspecific symptom of abdominal pain. Most of these incidences are caused by a neoplasm within the bowel acting as a lead point. Lipomas are benign fatty tumors that rarely develop in the colon and are very infrequently a precursor lesion to intussusception. Our present report describes a case of lipoma-associated intussusception in the transverse colon in an adult who presented with complaints of abdominal pain and acutely worsened chronic constipation. Computerized tomography (CT) imaging and barium enema revealed colocolonic intussusception with a lipomatous lead point and complete obstruction. The patient was admitted for same-day intervention and underwent a successful colectomy with no complications.

5.
Autophagy ; 17(11): 3740-3752, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33706671

RESUMO

The autophagy-lysosome system is an important cellular degradation pathway that recycles dysfunctional organelles and cytotoxic protein aggregates. A decline in this system is pathogenic in many human diseases including neurodegenerative disorders, fatty liver disease, and atherosclerosis. Thus there is intense interest in discovering therapeutics aimed at stimulating the autophagy-lysosome system. Trehalose is a natural disaccharide composed of two glucose molecules linked by a ɑ-1,1-glycosidic bond with the unique ability to induce cellular macroautophagy/autophagy and with reported efficacy on mitigating several diseases where autophagy is dysfunctional. Interestingly, the mechanism by which trehalose induces autophagy is unknown. One suggested mechanism is its ability to activate TFEB (transcription factor EB), the master transcriptional regulator of autophagy-lysosomal biogenesis. Here we describe a potential mechanism involving direct trehalose action on the lysosome. We find trehalose is endocytically taken up by cells and accumulates within the endolysosomal system. This leads to a low-grade lysosomal stress with mild elevation of lysosomal pH, which acts as a potent stimulus for TFEB activation and nuclear translocation. This process appears to involve inactivation of MTORC1, a known negative regulator of TFEB which is sensitive to perturbations in lysosomal pH. Taken together, our data show the trehalose can act as a weak inhibitor of the lysosome which serves as a trigger for TFEB activation. Our work not only sheds light on trehalose action but suggests that mild alternation of lysosomal pH can be a novel method of inducing the autophagy-lysosome system.Abbreviations: ASO: antisense oligonucleotide; AU: arbitrary units; BMDM: bone marrow-derived macrophages; CLFs: crude lysosomal fractions; CTSD: cathepsin D; LAMP: lysosomal associated membrane protein; LIPA/LAL: lipase A, lysosomal acid type; MAP1LC3: microtubule-associated protein 1 light chain 3; MFI: mean fluorescence intensity; MTORC1: mechanistic target of rapamycin kinase complex 1; pMAC: peritoneal macrophages; SLC2A8/GLUT8: solute carrier family 2, (facilitated glucose transporter), member 8; TFEB: transcription factor EB; TMR: tetramethylrhodamine; TREH: trehalase.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Lisossomos/metabolismo , Trealose/metabolismo , Animais , Autofagia/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Western Blotting , Endocitose , Imunofluorescência , Cromatografia Gasosa-Espectrometria de Massas , Lisossomos/fisiologia , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Trealose/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA