Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Imaging Inform Med ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639807

RESUMO

Deep brain stimulation (DBS) is a method of electrical neuromodulation used to treat a variety of neuropsychiatric conditions including essential tremor, Parkinson's disease, epilepsy, and obsessive-compulsive disorder. The procedure requires precise placement of electrodes such that the electrical contacts lie within or in close proximity to specific target nuclei and tracts located deep within the brain. DBS electrode trajectory planning has become increasingly dependent on direct targeting with the need for precise visualization of targets. MRI is the primary tool for direct visualization, and this has led to the development of numerous sequences to aid in visualization of different targets. Synthetic inversion recovery images, specified by an inversion time parameter, can be generated from T1 relaxation maps, and this represents a promising method for modifying the contrast of deep brain structures to accentuate target areas using a single acquisition. However, there is currently no accessible method for dynamically adjusting the inversion time parameter and observing the effects in real-time in order to choose the optimal value. In this work, we examine three different approaches to implementing an application for real-time optimal synthetic inversion recovery image selection and evaluate them based on their ability to display continually-updated synthetic inversion recovery images as the user modifies the inversion time parameter. These methods include continuously computing the inversion recovery equation at each voxel in the image volume, limiting the computation only to the voxels of the orthogonal slices currently displayed on screen, or using a series of lookup tables with precomputed solutions to the inversion recovery equation. We find the latter implementation provides for the quickest display updates both when modifying the inversion time and when scrolling through the image. We introduce a publicly available cross-platform application built around this conclusion. We also briefly discuss other details of the implementations and considerations for extensions to other use cases.

2.
Invest Radiol ; 59(7): 513-518, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38193790

RESUMO

OBJECTIVES: Detection of infratentorial demyelinating lesions in multiple sclerosis (MS) presents a challenge in magnetic resonance imaging (MRI), a difficulty that is further heightened in 7 T MRI. This study aimed to assess the efficacy of a novel MRI approach, lesion-attenuated magnetization-prepared gradient echo acquisition (LAMA), for detecting demyelinating lesions within the posterior fossa and upper cervical spine on 7 T MRI and contrast its performance with conventional double-inversion recovery (DIR) and T2-weighted turbo spin echo sequences. MATERIALS AND METHODS: We conducted a retrospective cross-sectional study in 42 patients with a confirmed diagnosis of MS. All patients had 7 T MRI that incorporated LAMA, 3D DIR, and 2D T2-weighted turbo spin echo sequences. Three readers assessed lesion count in the brainstem, cerebellum, and upper cervical spinal cord using both DIR and T2-weighted images in one session. In a separate session, LAMA was analyzed alone. Contrast-to-noise ratio was also compared between LAMA and the conventional sequences. Lesion counts between methods were assessed using nonparametric Wilcoxon signed rank test. Interrater agreement in lesion detection was estimated by intraclass correlation coefficients. RESULTS: LAMA identified a significantly greater number of lesions than DIR + T2 (mean 6.4 vs 3.0; P < 0.001). LAMA also exhibited better interrater agreement (intraclass correlation coefficient [95% confidence interval], 0.75 [0.41-0.88] vs 0.61 [0.35-0.78]). The contrast-to-noise ratio for LAMA (3.7 ± 0.9) significantly exceeded that of DIR (1.94 ± 0.7) and T2 (1.2 ± 0.7) (all P 's < 0.001). In cases with no lesions detected using DIR + T2, at least 1 lesion was identified in 83.3% with LAMA. Across all analyzed brain regions, LAMA consistently detected more lesions than DIR + T2. CONCLUSIONS: LAMA significantly improves the detection of infratentorial demyelinating lesions in MS patients compared with traditional methods. Integrating LAMA with standard magnetization-prepared 2 rapid acquisition gradient echo acquisition provides a valuable tool for accurately characterizing the extent of MS disease.


Assuntos
Imageamento por Ressonância Magnética , Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico por imagem , Feminino , Masculino , Adulto , Estudos Transversais , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Idoso
3.
J Neurosurg ; 141(1): 252-259, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38394660

RESUMO

OBJECTIVE: The aim of this study was to compare outcomes of direct targeting in deep brain stimulation (DBS) for essential tremor using 7T MRI versus 3T MRI. The authors hypothesized that 7T MRI direct targeting would be noninferior to 3T MRI in early tremor outcomes. METHODS: A retrospective study was conducted on patients undergoing unilateral thalamic DBS for essential tremor between 2021 and 2023. Two matched cohorts were assessed, one using 7T MRI and the other using 3T MRI for surgical planning. The primary endpoint was the percentage improvement in the Fahn-Tolosa-Marin Tremor Rating Scale (TRS) scores. Additionally, the authors assessed optimized programming settings and variance in electrode position on postoperative imaging. Demographic and clinical data were compared using the nonparametric Mann-Whitney U-test. The squared Euclidean distance of each contact from the group mean centroid was calculated and averaged across the entire cohort to provide the variance (i.e., the mean squared distance) of electrode contact position. RESULTS: A total of 34 patients were analyzed, with 17 in each cohort. There were no significant differences in demographic information or mean surgical dates between the groups. There were no differences in intraoperative target repositioning or adverse events. The 7T group had a significantly greater TRS improvement than the 3T group (64.9% ± 11.4% vs 50.9% ± 16.4%, p = 0.004). Patients in the 7T cohort also had a lower mean stimulation current compared with those in the 3T cohort (2.0 ± 0.8 mA vs 2.7 ± 0.9 mA, p = 0.01). Image evaluation revealed that although the mean electrode position was comparable between 7T and 3T, the 7T electrode positioning was more clustered, indicating a lower variance in the final electrode location. The mean Euclidean distance between the individual electrode tips and the group centroid was significantly less at 7T than at 3T (1.82 ± 0.68 mm vs 2.75 ± 0.81 mm, p = 0.001). CONCLUSIONS: Despite concerns for increased artifacts and distortions at 7T, the authors show that these effects can be mitigated with an appropriate workflow, leading to improved surgical outcomes with direct targeting using 7T MRI. Their results suggest similar accuracy but greater precision in targeting with 7T MRI compared with 3T MRI, resulting in lower stimulation currents and improved tremor reduction. Future studies are needed to assess outcomes related to 7T MRI in targeting other subcortical structures.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Imageamento por Ressonância Magnética , Humanos , Estimulação Encefálica Profunda/métodos , Tremor Essencial/terapia , Tremor Essencial/diagnóstico por imagem , Tremor Essencial/cirurgia , Masculino , Feminino , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Pessoa de Meia-Idade , Idoso , Resultado do Tratamento , Tálamo/diagnóstico por imagem , Tálamo/cirurgia , Eletrodos Implantados
4.
NPJ Parkinsons Dis ; 10(1): 13, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191546

RESUMO

Parkinson's disease (PD) is a prevalent neurodegenerative disorder that presents a diagnostic challenge due to symptom overlap with other disorders. Neuromelanin (NM) imaging is a promising biomarker for PD, but adoption has been limited, in part due to subpar performance at standard MRI field strengths. We aimed to evaluate the diagnostic utility of ultra-high field 7T NM-sensitive imaging in the diagnosis of PD versus controls and essential tremor (ET), as well as NM differences among PD subtypes. A retrospective case-control study was conducted including PD patients, ET patients, and controls. 7T NM-sensitive 3D-GRE was acquired, and substantia nigra pars compacta (SNpc) volumes, contrast ratios, and asymmetry indices were calculated. Statistical analyses, including general linear models and ROC curves, were employed. Twenty-one PD patients, 13 ET patients, and 18 controls were assessed. PD patients exhibited significantly lower SNpc volumes compared to non-PD subjects. SNpc total volume showed 100% sensitivity and 96.8% specificity (AUC = 0.998) for differentiating PD from non-PD and 100% sensitivity and 95.2% specificity (AUC = 0.996) in differentiating PD from ET. Contrast ratio was not significantly different between PD and non-PD groups (p = 0.07). There was also significantly higher asymmetry index in SNpc volume in PD compared to non-PD cohorts (p < 0.001). NM signal loss in PD predominantly involved the inferior, posterior, and lateral aspects of SNpc. Akinetic-rigid subtype showed more significant NM signal loss compared to tremor dominant subtype (p < 0.001). 7T NM imaging demonstrates potential as a diagnostic tool for PD, including potential distinction between subtypes, allowing improved understanding of disease progression and subtype-related characteristics.

5.
Med Phys ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39072826

RESUMO

Multi-energy computed tomography (MECT) offers the opportunity for advanced visualization, detection, and quantification of select elements (e.g., iodine) or materials (e.g., fat) beyond the capability of standard single-energy computed tomography (CT). However, the use of MECT requires careful consideration as substantially different hardware and software approaches have been used by manufacturers, including different sets of user-selected or hidden parameters that affect the performance and radiation dose of MECT. Another important consideration when designing MECT protocols is appreciation of the specific tasks being performed; for instance, differentiating between two different materials or quantifying a specific element. For a given task, it is imperative to consider both the radiation dose and task-specific image quality requirements. Development of a quality control (QC) program is essential to ensure the accuracy and reproducibility of these MECT applications. Although standard QC procedures have been well established for conventional single-energy CT, the substantial differences between single-energy CT and MECT in terms of system implementations, imaging protocols, and clinical tasks warrant QC tests specific to MECT. This task group was therefore charged with developing a systematic QC program designed to meet the needs of MECT applications. In this report, we review the various MECT approaches that are commercially available, including information about hardware implementation, MECT image types, image reconstruction, and postprocessing techniques that are unique to MECT. We address the requirements for MECT phantoms, review representative commercial MECT phantoms, and offer guidance regarding homemade MECT phantoms. We discuss the development of MECT protocols, which must be designed carefully with proper consideration of MECT technology, imaging task, and radiation dose. We then outline specific recommended QC tests in terms of general image quality, radiation dose, differentiation and quantification tasks, and diagnostic and therapeutic applications.

6.
AJNR Am J Neuroradiol ; 45(1): 76-81, 2023 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-38164557

RESUMO

BACKGROUND AND PURPOSE: An early and accurate diagnosis of multiple sclerosis remains challenging in clinical neurology. Established diagnostic methods have less than desirable sensitivity and specificity. An accurate, noninvasive diagnostic test for MS could have a major impact on diagnostic criteria. We compared the frequency of detection of the central vein sign (CVS) in white matter lesions of MS and controls on 7T T2*-weighted and SWI to 3T SWI. Additionally, we assessed the diagnostic performance of 7T T2*, 7T SWI, and 3T SWI for MS. MATERIALS AND METHODS: A retrospective case-control study was performed of patients with MS having both 7T MRI and 3T MRI. A control group of patients without MS was selected. Diagnosis of MS was established by board-certified neurologists with fellowship training in autoimmune neurology in line with the 2017 McDonald criteria. Percentage of lesions with a CVS was blindly measured for each technique. Diagnostic performance was computed by sensitivity, specificity, and positive and negative likelihood ratios (LRs). RESULTS: Sixty-one patients with MS (903 lesions) and 39 controls (1088 lesions) were included. 7T T2* showed significantly more CVS (87%) than both 7T SWI (73%) and 3T SWI (31%) (all P < .001). CVS was identified in the control group in ≤6% of lesions on all sequences. Using a threshold of >40% of lesions with CVS on 7T T2* and >15% on 7T SWI, both sequences had an accuracy = 100%, sensitivity = 100%, specificity = 100%, infinite positive LR, and zero negative LR. Using an optimal threshold of >12%, 3T SWI had an accuracy = 96.0%, sensitivity = 93.4%, specificity = 100%, infinite positive LR, and negative LR = 0.066. CONCLUSIONS: 7T MRI had 100% sensitivity and specificity for the diagnosis of MS and is superior to 3T. Future revisions to MS diagnostic criteria may consider recommendations for 7T MRI and inclusion of CVS as a biomarker.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/patologia , Estudos de Casos e Controles , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Veias/patologia , Encéfalo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA