Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38436557

RESUMO

Spatial transcriptomics technologies have shed light on the complexities of tissue structures by accurately mapping spatial microenvironments. Nonetheless, a myriad of methods, especially those utilized in platforms like Visium, often relinquish spatial details owing to intrinsic resolution limitations. In response, we introduce TransformerST, an innovative, unsupervised model anchored in the Transformer architecture, which operates independently of references, thereby ensuring cost-efficiency by circumventing the need for single-cell RNA sequencing. TransformerST not only elevates Visium data from a multicellular level to a single-cell granularity but also showcases adaptability across diverse spatial transcriptomics platforms. By employing a vision transformer-based encoder, it discerns latent image-gene expression co-representations and is further enhanced by spatial correlations, derived from an adaptive graph Transformer module. The sophisticated cross-scale graph network, utilized in super-resolution, significantly boosts the model's accuracy, unveiling complex structure-functional relationships within histology images. Empirical evaluations validate its adeptness in revealing tissue subtleties at the single-cell scale. Crucially, TransformerST adeptly navigates through image-gene co-representation, maximizing the synergistic utility of gene expression and histology images, thereby emerging as a pioneering tool in spatial transcriptomics. It not only enhances resolution to a single-cell level but also introduces a novel approach that optimally utilizes histology images alongside gene expression, providing a refined lens for investigating spatial transcriptomics.


Assuntos
Perfilação da Expressão Gênica , Expressão Gênica
2.
Chin Med J Pulm Crit Care Med ; 2(1): 1-9, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39170962

RESUMO

Asthma, a chronic respiratory disease with a global prevalence of approximately 300 million individuals, presents a significant societal and economic burden. This multifaceted syndrome exhibits diverse clinical phenotypes and pathogenic endotypes influenced by various factors. The advent of omics technologies has revolutionized asthma research by delving into the molecular foundation of the disease to unravel its underlying mechanisms. Omics technologies are employed to systematically screen for potential biomarkers, encompassing genes, transcripts, methylation sites, proteins, and even the microbiome components. This review provides an insightful overview of omics applications in asthma research, with a special emphasis on genetics, transcriptomics, epigenomics, and the microbiome. We explore the cutting-edge methods, discoveries, challenges, and potential future directions in the realm of asthma omics research. By integrating multi-omics and non-omics data through advanced statistical techniques, we aspire to advance precision medicine in asthma, guiding diagnosis, risk assessment, and personalized treatment strategies for this heterogeneous condition.

3.
Cell Rep ; 43(6): 114291, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38823017

RESUMO

Atoh7 is transiently expressed in retinal progenitor cells (RPCs) and is required for retinal ganglion cell (RGC) differentiation. In humans, a deletion in a distal non-coding regulatory region upstream of ATOH7 is associated with optic nerve atrophy and blindness. Here, we functionally interrogate the significance of the Atoh7 regulatory landscape to retinogenesis in mice. Deletion of the Atoh7 enhancer structure leads to RGC deficiency, optic nerve hypoplasia, and retinal blood vascular abnormalities, phenocopying inactivation of Atoh7. Further, loss of the Atoh7 remote enhancer impacts ipsilaterally projecting RGCs and disrupts proper axonal projections to the visual thalamus. Deletion of the Atoh7 remote enhancer is also associated with the dysregulation of axonogenesis genes, including the derepression of the axon repulsive cue Robo3. Our data provide insights into how Atoh7 enhancer elements function to promote RGC development and optic nerve formation and highlight a key role of Atoh7 in the transcriptional control of axon guidance molecules.


Assuntos
Axônios , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Elementos Facilitadores Genéticos , Células Ganglionares da Retina , Animais , Células Ganglionares da Retina/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Camundongos , Axônios/metabolismo , Elementos Facilitadores Genéticos/genética , Neurogênese/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Nervo Óptico/metabolismo , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Retina/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Roundabout , Receptores de Superfície Celular
4.
EBioMedicine ; 101: 105026, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38417378

RESUMO

BACKGROUND: An intergenic region at chromosome 4q31 is one of the most significant regions associated with COPD susceptibility and lung function in GWAS. In this region, the implicated causal gene HHIP has a unique epithelial expression pattern in adult human lungs, in contrast to dominant expression in fibroblasts in murine lungs. However, the mechanism underlying the species-dependent cell type-specific regulation of HHIP remains largely unknown. METHODS: We employed snATAC-seq analysis to identify open chromatin regions within the COPD GWAS region in various human lung cell types. ChIP-quantitative PCR, reporter assays, chromatin conformation capture assays and Hi-C assays were conducted to characterize the regulatory element in this region. CRISPR/Cas9-editing was performed in BEAS-2B cells to generate single colonies with stable knockout of the regulatory element. RT-PCR and Western blot assays were used to evaluate expression of HHIP and epithelial-mesenchymal transition (EMT)-related marker genes. FINDINGS: We identified a distal enhancer within the COPD 4q31 GWAS locus that regulates HHIP transcription at baseline and after TGFß treatment in a SMAD3-dependent, but Hedgehog-independent manner in human bronchial epithelial cells. The distal enhancer also maintains chromatin topological domains near 4q31 locus and HHIP gene. Reduced HHIP expression led to increased EMT induced by TGFß in human bronchial epithelial cells. INTERPRETATION: A distal enhancer regulates HHIP expression both under homeostatic condition and upon TGFß treatment in human bronchial epithelial cells. The interaction between HHIP and TGFß signalling possibly contributes to COPD pathogenesis. FUNDING: Supported by NIH grants R01HL127200, R01HL148667 and R01HL162783 (to X. Z).


Assuntos
Proteínas Hedgehog , Doença Pulmonar Obstrutiva Crônica , Adulto , Humanos , Animais , Camundongos , Proteínas Hedgehog/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Pulmão/patologia , Células Epiteliais/metabolismo , Cromatina/genética , Cromatina/metabolismo , Fator de Crescimento Transformador beta/metabolismo
5.
Front Genet ; 12: 784775, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003220

RESUMO

Pan-cancer strategy, an integrative analysis of different cancer types, can be used to explain oncogenesis and identify biomarkers using a larger statistical power and robustness. Fine-mapping defines the casual loci, whereas genome-wide association studies (GWASs) typically identify thousands of cancer-related loci and not necessarily have a fine-mapping component. In this study, we develop a novel strategy to identify the causal loci using a pan-cancer and fine-mapping assumption, constructing the CAusal Pan-cancER gene (CAPER) score and validating its performance using internal and external validation on 1,287 individuals and 985 cell lines. Summary statistics of 15 cancer types were used to define 54 causal loci in 15 potential genes. Using the Cancer Genome Atlas (TCGA) training set, we constructed the CAPER score and divided cancer patients into two groups. Using the three validation sets, we found that 19 cancer-related variables were statistically significant between the two CAPER score groups and that 81 drugs had significantly different drug sensitivity between the two CAPER score groups. We hope that our strategies for selecting causal genes and for constructing CAPER score would provide valuable clues for guiding the management of different types of cancers.

6.
Biomaterials ; 313: 122805, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39250865

RESUMO

Copper (Cu), an essential micronutrient with redox properties, plays a pivotal role in a wide array of pathological and physiological processes across virtually all cell types. Maintaining an optimal copper concentration is critical for cellular survival: insufficient copper levels disrupt respiration and metabolism, while excess copper compromises cell viability, potentially leading to cell death. Similarly, in the context of cancer, copper exhibits a dual role: appropriate amount of copper can promote tumor progression and be an accomplice, yet beyond befitting level, copper can bring about multiple types of cell death, including autophagy, apoptosis, ferroptosis, immunogenic cell death, pyroptosis, and cuproptosis. These forms of cell death are beneficial against cancer progression; however, achieving precise copper regulation within tumors remains a significant challenge in the pursuit of effective cancer therapies. The emergence of nanodrug delivery systems, distinguished by their precise targeting, controlled release, high payload capacity, and the ability to co-deliver multiple agents, has revitalized interest in exploiting copper's precise regulatory capabilities. Nevertheless, there remains a dearth of comprehensive review of copper's bidirectional effects on tumorigenesis and the role of copper-based nanomaterials in modulating tumor progression. This paper aims to address this gap by elucidating the complex role in cancer biology and highlighting its potential as a therapeutic target. Through an exploration of copper's dualistic nature and the application of nanotechnology, this review seeks to offer novel insights and guide future research in advancing cancer treatment.


Assuntos
Cobre , Nanoestruturas , Neoplasias , Cobre/química , Humanos , Animais , Nanoestruturas/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Morte Celular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA