RESUMO
The directional organization of multiple nociceptive regions, particularly within obscure operculoinsular areas, underlying multidimensional pain processing remains elusive. This study aims to establish the fundamental organization between somatosensory and insular cortices in routing nociceptive information. By employing an integrated multimodal approach of high-field fMRI, intracranial electrophysiology, and transsynaptic viral tracing in rats, we observed a hierarchically organized connection of S1/S2 â posterior insula â anterior insula in routing nociceptive information. The directional nociceptive pathway determined by early fMRI responses was consistent with that examined by early evoked LFP, intrinsic effective connectivity, and anatomical projection, suggesting fMRI could provide a valuable facility to discern directional neural circuits in animals and humans non-invasively. Moreover, our knowledge of the nociceptive hierarchical organization of somatosensory and insular cortices and the interface role of the posterior insula may have implications for the development of targeted pain therapies.
Assuntos
Córtex Insular , Imageamento por Ressonância Magnética , Humanos , Ratos , Animais , Imageamento por Ressonância Magnética/métodos , Nociceptividade/fisiologia , Córtex Somatossensorial/diagnóstico por imagem , Córtex Somatossensorial/fisiologia , Mapeamento Encefálico , DorRESUMO
Discs large (Dlg) is an essential polarity protein and a tumor suppressor originally characterized in Drosophila but also well conserved in vertebrates. Like the majority of polarity proteins, plasma membrane (PM)/cortical localization of Dlg is required for its function in polarity and tumorigenesis, but the exact mechanisms targeting Dlg to the PM remain to be fully elucidated. Here, we show that, similar to recently discovered polybasic polarity proteins such as Lgl and aPKC, Dlg also contains a positively charged polybasic domain that electrostatically binds the PM phosphoinositides PI4P and PI(4,5)P2 Electrostatic targeting by the polybasic domain contributes significantly to the PM localization of Dlg in follicular and early embryonic epithelial cells, and is crucial for Dlg to regulate both polarity and tumorigenesis. The electrostatic PM targeting of Dlg is controlled by a potential phosphorylation-dependent allosteric regulation of its polybasic domain, and is specifically enhanced by the interactions between Dlg and another basolateral polarity protein and tumor suppressor, Scrib. Our studies highlight an increasingly significant role of electrostatic PM targeting of polarity proteins in regulating cell polarity.
Assuntos
Membrana Celular/metabolismo , Proteínas de Drosophila/metabolismo , Eletricidade Estática , Proteínas Supressoras de Tumor/metabolismo , Animais , Animais Geneticamente Modificados , Carcinogênese/metabolismo , Membrana Celular/genética , Fenômenos Fisiológicos Celulares , Polaridade Celular , Drosophila/metabolismo , Proteínas de Drosophila/genética , Células Epiteliais/metabolismo , Feminino , Genes Supressores de Tumor , Masculino , Proteínas Supressoras de Tumor/genéticaRESUMO
Subconjunctival fibrosis is the major cause of failure in both conventional and modern minimally invasive glaucoma surgeries (MIGSs) with subconjunctival filtration. The search for safe and effective anti-fibrotic agents is critical for improving long-term surgical outcomes. In this study, we investigated the effect of inhibiting the rapamycin-insensitive mTORC1/4E-BP1 axis on the transforming growth factor-beta 1(TGF-ß1)-induced fibrotic responses in human Tenon's fibroblasts (HTFs), as well as in a rat model of glaucoma filtration surgery (GFS). Primary cultured HTFs were treated with 3 ng/mL TGF-ß1 for 24 h, followed by treatment with 10 µM CZ415 for additional 24 h. Rapamycin (10 µM) was utilized as a control for mTORC1/4E-BP1 signaling insensitivity. The expression levels of fibrosis-associated molecules were measured using quantitative real-time PCR, Western blotting, and immunofluorescence analysis. Cell migration was assessed through the scratch wound assay. Additionally, a rat model of GFS was employed to evaluate the anti-fibrotic effect of CZ415 in vivo. Our findings indicated that both rapamycin and CZ415 treatment significantly reduced the TGF-ß1-induced cell proliferation, migration, and the expression of pro-fibrotic factors in HTFs. CZ415 also more effectively inhibited TGF-ß1-mediated collagen synthesis in HTFs compared to rapamycin. Activation of mTORC1/4E-BP signaling following TGF-ß1 exposure was highly suppressed by CZ415 but was only modestly inhibited by rapamycin. Furthermore, CZ415 was found to decrease subconjunctival collagen deposition in rats post GFS. Our results suggest that rapamycin-insensitive mTORC1/4E-BP1 signaling plays a critical role in TGF-ß1-driven collagen synthesis in HTFs. This study demonstrated that inhibition of the mTORC1/4E-BP1 axis offers superior anti-fibrotic efficacy compared to rapamycin and represents a promising target for improving the success rate of both traditional and modern GFSs.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Fibroblastos , Fibrose , Alvo Mecanístico do Complexo 1 de Rapamicina , Sirolimo , Cápsula de Tenon , Fator de Crescimento Transformador beta1 , Animais , Fator de Crescimento Transformador beta1/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Humanos , Ratos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Sirolimo/farmacologia , Fibrose/metabolismo , Cápsula de Tenon/metabolismo , Cápsula de Tenon/efeitos dos fármacos , Células Cultivadas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Western Blotting , Ratos Sprague-Dawley , Proteínas de Ciclo Celular/metabolismo , Transdução de Sinais , Reação em Cadeia da Polimerase em Tempo Real , Masculino , Glaucoma/metabolismo , Glaucoma/tratamento farmacológico , Glaucoma/patologia , Imunossupressores/farmacologiaRESUMO
Nirmatrelvir, a pivotal component of the oral antiviral Paxlovid for COVID-19, targets the SARS-CoV-2 main protease (Mpro) as a covalent inhibitor. Here, we employed combined computational methods to explore how the prevalent Omicron variant mutation P132H, alone and in combination with A173V (P132H-A173V), affects nirmatrelvir's efficacy. Our findings suggest that P132H enhances the noncovalent binding affinity of Mpro for nirmatrelvir, whereas P132H-A173V diminishes it. Although both mutants catalyze the rate-limiting step more efficiently than the wild-type (WT) Mpro, P132H slows the overall rate of covalent bond formation, whereas P132H-A173V accelerates it. Comprehensive analysis of noncovalent and covalent contributions to the overall binding free energy of the covalent complex suggests that P132H likely enhances Mpro sensitivity to nirmatrelvir, while P132H-A173V may confer resistance. Per-residue decompositions of the binding and activation free energies pinpoint key residues that significantly affect the binding affinity and reaction rates, revealing how the mutations modulate these effects. The mutation-induced conformational perturbations alter drug-protein local contact intensities and the electrostatic preorganization of the protein, affecting noncovalent binding affinity and the stability of key reaction states, respectively. Our findings inform the mechanisms of nirmatrelvir resistance and sensitivity, facilitating improved drug design and the detection of resistant strains.
Assuntos
Antivirais , Proteases 3C de Coronavírus , Mutação , SARS-CoV-2 , SARS-CoV-2/enzimologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/genética , Antivirais/farmacologia , Antivirais/química , Humanos , Tratamento Farmacológico da COVID-19 , Simulação de Dinâmica Molecular , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Leucina/química , Termodinâmica , Sulfonamidas/farmacologia , Sulfonamidas/química , Sulfonamidas/metabolismo , Ligação Proteica , Succinatos/química , Succinatos/farmacologia , Succinatos/metabolismo , Lactamas , Nitrilas , ProlinaRESUMO
In the sparse studies for multiple pathway exposure, attention has predominantly been directed towards developed regions, thereby overlooking the exposure level and health outcome for the inhabitants of the semi-arid regions in northwest China. However, cities within these regions grapple with myriad challenges, encompassing insufficient sanitation infrastructure and outdated heating. In this study, we analyzed the characteristics and sources of polycyclic aromatic hydrocarbons (PAHs) pollution in PM2.5, water, diet, and dust during different periods in Lanzhou, and estimated corresponding carcinogenic health risk through inhalation, ingestion, and dermal absorption. Our observations revealed the concentrations of PAHs in PM2.5, food, soil, and water are 200.11 ng m-3, 8.67 mg kg-1, 3.91 mg kg-1, and 14.5 ng L-1, respectively, indicating that the Lanzhou area was seriously polluted. Lifetime incremental cancer risk (ILCR) showed a heightened cancer risk to men compared to women, to the younger than the elderly, and during heating period as opposed to non-heating period. Notably, the inhalation was the primary route of PAHs exposure and the risk of exposure by inhalation cannot be ignored. The total environmental exposure assessment of PAHs can achieve accurate prevention and control of PAHs environmental exposure according to local conditions and targets.
Assuntos
Exposição Ambiental , Hidrocarbonetos Policíclicos Aromáticos , China/epidemiologia , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Humanos , Medição de Risco , Feminino , Masculino , Poluentes Atmosféricos/análise , Pessoa de Meia-Idade , Adulto , Material Particulado/análise , Monitoramento Ambiental , Cidades , Poeira/análise , Idoso , Adulto JovemRESUMO
Objective: This study aimed to compare the effects of ketamine and fentanyl combined with dexmedetomidine in lumbar anesthesia for proximal femur fractures among elderly patients. Design: This study employed a prospective, randomized controlled trial (RCT) design. Settings: The study was conducted at Beijing Jishuitan Hospital. Participants: A total of 100 elderly patients with proximal femur fractures who underwent lumbar anesthesia between January 2022 and January 2023. Intervention: Participants were divided into two groups: the ketamine group (n=49) and the fentanyl group (n=51). The ketamine group received ketamine combined with dexmedetomidine, while the fentanyl group received fentanyl combined with dexmedetomidine. Outcome Measures: The following outcome measures were assessed and compared between the two groups: (1) hemodynamic indexes; (2) visual analogue scale (VAS) scores; (3) stress reaction indexes; (4) Incidence of adverse effects. These comparisons were made using the random number table method. Results: No significant differences were observed in systolic blood pressure (SBP), transcutaneous oxygen saturation (SPO2), and heart rate (HR) between the two groups at each time point (P > .05). SBP and HR of both groups were lower than baseline (T0) from T1 onwards. Throughout the surgery, SBP and HR exhibited a decreasing trend with operation time, followed by an increase post-operation. SPO2 showed minimal fluctuations during surgery in both groups. Preoperatively, VAS scores were comparable between groups (P > .05). However, at 12h, 24h, and 48h post-surgery, VAS scores were significantly lower in the ketamine group (P < .05). Stress indicator levels were similar preoperatively (P > .05), but postoperatively, serum cortisol (Cor), epinephrine (E), and norepinephrine (NE) levels were lower in the ketamine group (P < .05). Conclusion: Dexmedetomidine combined with ketamine demonstrates safety and efficacy in the elderly. It significantly reduces postoperative pain and stress reactions while decreasing the incidence of adverse reactions.
RESUMO
The authors describe a temporary intraoperative fixation method for the absorbable plates' fixation of subcondylar fracture by retromandibular transparotid approach. First, the fracture was temporarily fixed with a 4-hole titanium microplate across the fracture line in the center of the lateral surface of the condyle to maintain the reduction of the fracture. Then, two 4-hole absorbable mini-plates were fixed on the posterior and anterior border of the condylar neck. Finally, the 4-hole titanium microplate and screws were removed before the wound closure. In the absorbable plates' fixation of subcondylar fracture by transparotid approach, the method of temporary intraoperative fixation using a 4-hole titanium microplate offsets the limited exposure of the operative field, smooths the operation, and offers the reliability and validity of the absorbable plates' fixation.
Assuntos
Fraturas Mandibulares , Humanos , Fraturas Mandibulares/cirurgia , Titânio , Reprodutibilidade dos Testes , Fixação Interna de Fraturas/métodos , Côndilo Mandibular/cirurgia , Placas ÓsseasRESUMO
AIM: This qualitative systematic review aimed to consolidate existing evidence on the self-management experience of older patients with multimorbidity worldwide. METHODS: Nine databases were searched, for papers published from database inception to April 2023. The systematic review was conducted according to the systematic review method of qualitative evidence by the Joanna Briggs Institute (JBI). RESULTS: Seven studies were included. Finally, four themes and 12 subthemes were formed: (1) physical level: reduced physical function and lack of coordinated care; (2) psychological level: mental state of anxiety and positive attitude towards life; (3) social level: technical support, support from family, support from healthcare workers and support from others; and (4) practical level: economic burden, lifestyle changes, self-care in daily life and compliance was much lower than expected. CONCLUSIONS: To improve self-management in older people with multimorbidity, nurses should provide more guidance to patients to improve their self-management skills, and clinicians should recommend effective self-management behaviours.
Assuntos
Multimorbidade , Pesquisa Qualitativa , Autogestão , Humanos , Autogestão/psicologia , IdosoRESUMO
Glioblastoma multiforme (GBM) is the most common and aggressive brain tumor with a poor prognosis. The growth of GBM cells depends on the core transcriptional apparatus, thus rendering RNA polymerase (RNA pol) complex as a candidate therapeutic target. The RNA pol II subunit B (POLR2B) gene encodes the second largest subunit of the RNA pol II (RPB2); however, its genomic status and function in GBM remain unclear. Certain GBM data sets in cBioPortal were used for investigating the genomic status and expression of POLR2B in GBM. The function of RPB2 was analyzed following knockdown of POLR2B expression by shRNA in GBM cells. The cell counting kit-8 assay and PI staining were used for cell proliferation and cell cycle analysis. A xenograft mouse model was established to analyze the function of RPB2 in vivo. RNA sequencing was performed to analyze the RPB2-regulated genes. GO and GSEA analyses were applied to investigate the RPB2-regulated gene function and associated pathways. In the present study, the genomic alteration and overexpression of the POLR2B gene was described in glioblastoma. The data indicated that knockdown of POLR2B expression suppressed tumor cell growth of glioblastoma in vitro and in vivo. The analysis further demonstrated the identification of the RPB2-regulated gene sets and highlighted the DNA damage-inducible transcript 4 gene as the downstream target of the POLR2B gene. The present study provides evidence indicating that RPB2 functions as a growth regulator in glioblastoma and could be used as a potential therapeutic target for the treatment of this disease.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Animais , Camundongos , Glioblastoma/patologia , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proliferação de Células/genética , Neoplasias Encefálicas/patologia , RNA Interferente Pequeno/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão GênicaRESUMO
MAIN CONCLUSION: Overexpression of JcSEUSS1 resulted in late flowering, reduced flower number, wrinkled kernels, and decreased seed yield in Jatopha curcas, while downregulation of JcSEUSS1 increased flower number and seed production. The seed oil of Jatropha curcas is suitable as an ideal alternative for diesel fuel, yet the seed yield of Jatropha is restricted by its small number of female flowers and low seed setting rate. Therefore, it is crucial to identify genes that regulate flowering and seed set, and hence improve seed yield. In this study, overexpression of JcSEUSS1 resulted in late flowering, fewer flowers and fruits, and smaller fruits and seeds, causing reduced seed production and oil content. In contrast, the downregulation of JcSEUSS1 by RNA interference (RNAi) technology caused an increase in the flower number and seed yield. However, the flowering time, seed number per fruit, seed weight, and size exhibited no obvious changes in JcSEUSS1-RNAi plants. Moreover, the fatty acid composition also changed in JcSEUSS1 overexpression and RNAi plants, the percentage of unsaturated fatty acids (FAs) was increased in overexpression plants, and the saturated FAs were increased in RNAi plants. These results indicate that JcSEUSS1 played a negative role in regulating reproductive growth and worked redundantly with other genes in the regulation of flowering time, seed number per fruit, seed weight, and size.
Assuntos
Jatropha , Jatropha/genética , Sementes/genética , Frutas/genética , Madeira , Ácidos Graxos , GenitáliaRESUMO
Drug abuse is a dramatic challenge for the whole society because of high relapse rate. Environmental cues are crucial for the preference memory of drug abuse. Extinction therapy has been developed to inhibit the motivational effect of drug cues to prevent the reinstatement of morphine abuse. However, extinction therapy alone only forms a new kind of unstable inhibitory memory. We found that morphine conditioned place preference (CPP) extinction training increased the association of nitric oxide synthase (nNOS) with its carboxy-terminal PDZ ligand (CAPON) in the dorsal hippocampus (dHPC) significantly and blocking the morphine-induced nNOS-CAPON association using Tat-CAPON-12C during and after extinction training reversed morphine-induced hippocampal neuroplasticity defect and prevented the reinstatement and spontaneous recovery of morphine CPP. Moreover, in the hippocampal selective ERK2 knock-out or nNOS knockout mice, the effect of Tat-CAPON-12C on the reinstatement of morphine CPP and hippocampal neuroplasticity disappeared, suggesting ERK2 is necessary for the effects of Tat-CAPON-12C. Together, our findings suggest that nNOS-CAPON interaction in the dHPC may affect the consolidation of morphine CPP extinction and dissociating nNOS-CAPON prevents the reinstatement and spontaneous recovery of morphine CPP, possibly through ERK2-mediated neuroplasticity and extinction memory consolidation, offering a new target to prevent the reinstatement of drug abuse.
Assuntos
Condicionamento Clássico , Morfina , Animais , Condicionamento Psicológico , Extinção Psicológica , Hipocampo , Camundongos , Morfina/farmacologia , Óxido Nítrico SintaseRESUMO
BACKGROUND: This study aimed to establish a clinical-based nomogram for predicting the success rate of high-volume Foley catheterization for labor induction. METHODS: This retrospective study included 1149 full-term pregnant women who received high-volume Foley catheterization for labor induction from January 2019 to December 2021 in Changshu No.1 People's Hospital. Univariate and multivariate logistic regression analyses were performed, in which the labor induction success was set as dependent variables and the characteristics (including age, height, weight, BMI, gravidity, parity, gestational age, uterine height, abdominal circumference, cervical Bishop score, amniotic fluid index, cephalic presentation, neonatal weight, pregnancy complications, etc.) were set as independent variables. A nomogram scoring model was established based on these risk factors, and a calibration curve was plotted to verify the predictive accuracy of the model. RESULTS: The success rate of labor induction was 83.55% (960/1149). Univariate analysis revealed that the risk factors associated with the success rate of high-volume Foley catheterization for labor induction were height, pregnancy, birth, age, weight, BMI, uterine height, abdominal circumference, and hypertension. Multivariate logistic regression analysis showed that age (OR = 0.950; 95% CI: 0.904 ~ 0.998), height (OR = 1.062; 95% CI: 1.026 ~ 1.100), BMI (OR = 0.871; 95% CI: 0.831 ~ 0.913), and parity (OR = 8.007; 95% CI: 4.483 ~ 14.303) were independent risk factors for labor induction success by high-volume Foley catheterization. The area under the curve (AUC) of the receiver operating characteristic (ROC) curve in the prediction model was 0.752 (95% CI 0.716 ~ 0.788). A nomogram was constructed based on the final multivariate analysis with a corrected C-index of 0.748, which indicated that the model was calibrated reasonably. CONCLUSION: Four risk factors were used to construct a nomogram to evaluate the success rate of high-volume Foley catheterization for labor induction. The nomogram provides a visual clinical tool to assist in the selection of the most appropriate mode of labor induction for pregnant women of different risk levels.
Assuntos
Trabalho de Parto Induzido , Cateterismo Urinário , Recém-Nascido , Gravidez , Feminino , Humanos , Estudos Retrospectivos , Número de Gestações , Maturidade Cervical , CatéteresRESUMO
Five new diarylbutyrolactones and sesquilignans (1A/1B: â-â4: ), including one pair of enantiomers (1A/1B: ), together with 10 known analogues (5: â-â14: ), were isolated from the whole plants of Saussurea medusa. Compound 1: was found to possess an unusual 7,8'-diarylbutyrolactone lignan structure. Separation by chiral HPLC analysis led to the isolation of one pair of enantiomers, (+)-1A: and (-)-1B: . The structures of the new compounds were elucidated by extensive spectroscopic data. All compounds, except compounds 5, 7: and 9: , were isolated from S. medusa for the first time. Moreover, compounds 1: â-â 4, 8: and 10: â-â14: had never been obtained from the genus Saussurea previously. Compounds (+)- 1A, 2, 5, 7: , and 9: â-â11: were found to inhibit the lipopolysaccharide (LPS)-induced release of NO by RAW264.7 cells with IC50 values ranging from 10.1 ± 1.8 to 41.7 ± 2.1 µM. Molecular docking and iNOS expression experiments were performed to examine the interactions between the active compounds and the iNOS enzyme.
Assuntos
Lignanas , Saussurea , Camundongos , Animais , Lipopolissacarídeos , Saussurea/química , Simulação de Acoplamento Molecular , Lignanas/farmacologia , Células RAW 264.7RESUMO
Nedd4 family interacting protein 1 (Ndfip1) was first mentioned in an article in 2000. Since its discovery, related studies have shown that this protein is associated with apoptosis, neuroprotection, substance transport, ubiquitination, and immune regulation. It is noteworthy that the lack of Ndfip1 can lead to death in fetal mice. Researchers generally believe that the function of Ndfip1 is closely related to individual immune capacity and have published a large number of articles. However, a comprehensive classification of the immune regulatory function of Ndfip1 is still lacking. In this review, we will overview and discuss this new perspective, focusing on the role of Ndfip1 in the proliferation, differentiation, and cell activity of CD4+ T cells, CD8+ T cells, mast cells, and eosinophils. This review provides an updated summary of Ndfip1, which will unveil novel therapeutic targets. Finally, the conclusion is that Ndfip1 mainly plays a negative regulatory role in immune cells by maintaining the stability of the immune response and limiting its overexpression.
Assuntos
Linfócitos T CD8-Positivos , Ubiquitina-Proteína Ligases , Animais , Camundongos , Proteínas de Transporte/metabolismo , Proteínas de Membrana/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , UbiquitinaçãoRESUMO
Impressive progress has been made in the copper-catalyzed asymmetric propargylic substitution (APS) reaction, but its use in remote asymmetric yne-allylic substitution remains a challenging topic. Herein, we report the first remote enantioselective copper-catalyzed sulfonylation of yne-allylic esters with sodium sulfinates. The reaction is assumed to occur via a copper-vinylvinylidene species as the key reactive intermediate. The use of readily available starting materials, the mild reaction conditions, and the excellent regio-, enantio- and stereoselectivity, as well as broad substrate scope (>70 examples), show the practicality and attractiveness of this method.
RESUMO
Aldehyde dehydrogenase 6 family member A1 (ALDH6A1) is a highly conserved member of aldehyde dehydrogenase (ALDHs) family. Recent studies reveal that it broadly involved in tumorigenesis and drug metabolism in kinds of cancer. However, the critical role of ALDH6A1 in bladder cancer progression and cisplatin resistance of cancer cells are still poorly understood. In this study, we researched the significant function of ALDH6A1 in bladder cancer. Our results showed that ALDH6A1 exhibited a decreased expression in clinical bladder cancer tissues and bladder cancer cell lines. Stable ALDH6A1 knockdown not only could promote cell growth and colony formation in bladder cancer cells, but also enhance drug resistance to cisplatin treatment. On the contrary, we found the active transcript factor hepatocyte nuclear factor 4α (HNF4α, NR2A1) by alveriene could upregulate ALDH6A1 expression, significantly inhibit the cell growth and colony formation of bladder cancer cells, and improve cisplatin sensitivity of bladder cancer cells. Together, our results show that ALDH6A1 plays as a tumor suppressor in bladder cancer, which regulated by HNF4a. ALDH6A1 could be a promising diagnostic marker and treatment target in bladder cancer.
Assuntos
Aldeído Oxirredutases/metabolismo , Antineoplásicos , Neoplasias da Bexiga Urinária , Aldeído Desidrogenase/genética , Família Aldeído Desidrogenase 1 , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Família , Humanos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismoRESUMO
PURPOSE: EphA2 is a key factor underlying invasive propensity of gliomas, and is associated with poor prognosis of tumors. We aimed to develop a radiomics-based imaging index for predicting EphA2 expression in diffuse gliomas, and further estimating its value for grading of tumors. METHODS: A total of 182 patients with diffuse gliomas were included. All subjects underwent pre-operative MRI and post-operative pathological diagnosis. EphA2 expression of tumors was scored on pathological sections with immunohistochemical staining using monoclonal EphA2 antibody. MRI radiomics features were extracted from three-dimensional contrast-enhanced T1-weighted imaging and diffusion kurtosis imaging. Predictive models were constructed using machine learning-based radiomics features selection and three classifiers for predicting EphA2 expression and tumor grade. Features of best EphA2 expression model were subsequently used to construct another model of tumor grading. For each model, 146 cases (80%) were randomly picked as training and the rest 36 (20%) were testing cohorts. EphA2 expression was further correlated to the radiomics features in both grade models using Spearman's correlation. RESULTS: Logistic regression model presented highest performance for predicting EphA2 expression (AUC: 0.836/0.724 in training/validation set). Tumor gradings model guided by features from EphA2 expression model demonstrated comparable performance (AUC: 0.930/0.983) to that constructed directly using imaging radiomics features (AUC: 0.960/0.977). Two radiomics features which included in both LR-grade models showed strong correlation (P < 0.05) with EphA2 expression. CONCLUSION: The expression of EphA2 in gliomas could be predicted by radiomics features extracted from diffusion kurtosis MRI, which could also be used to assist tumor grading.
Assuntos
Neoplasias Encefálicas , Carcinoma Hepatocelular , Eritropoetina , Glioma , Neoplasias Hepáticas , Encéfalo , Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Receptores da Eritropoetina , Estudos RetrospectivosRESUMO
BACKGROUND: Although FOXO3a can inhibit the cell proliferation of prostate cancer, its relationship with reactive oxygen species (ROS) in prostate cancer (PCa) has not been reported. METHODS: We analyzed the correlation between the expression of FOXO3a and the antioxidant enzyme catalase in prostate cancer with the TCGA and GEPIA databases. We also constructed a PPI network of FOXO3a via the STRING database. The mRNA and protein expression of FOXO3a and catalase were detected by qRT-PCR or western blotting in LNCaP and 22RV1 cells treated with DHT, R1881, or Enzalutamide. The effects of FOXO3a on catalase expression were tested by over-expressing or knocking down FOXO3a in LNCaP cells. Furthermore, the catalase activity and ROS level were detected in LNCaP cells treated with DHT. Cell proliferation and ROS were also analyzed in LNCaP which was treated with antioxidant. RESULTS: Results showed that the catalase expression was down-regulated in prostate cancer. A positive correlation between FOXO3a and catalase existed. DHT treatment could significantly reduce FOXO3a and catalase expression at mRNA and protein level in LNCaP cells. Catalase expression partly depended on FOXO3a as over-expression and knockdown of FOXO3a could result in the expresssion change of catalase. DHT treatment was found to inhibit catalase activity and increase ROS level in prostate cancer cell. Our study also demonstrated that antioxidant treatment reduced DHT-induced proliferation and ROS production in prostate cancer cell. CONCLUSIONS: We discovered a novel mechanism by which DHT promotes prostate cancer cell proliferation via suppressing catalase activity and activating ROS signaling via a FOXO3a dependent manner.
Assuntos
Androgênios , Neoplasias da Próstata , Antioxidantes , Catalase/metabolismo , Proliferação de Células , Humanos , Masculino , Neoplasias da Próstata/genética , RNA Mensageiro , Espécies Reativas de OxigênioRESUMO
INTRODUCTION: The purpose of this study was to establish a novel and reversible experimental ocular hypertension primate model by blocking Schlemm's canal. METHODS: A model was induced in adult cynomolgus monkeys (n=4) by blocking Schlemm's canal with an inserted microcatheter (200 µm diameter); it was removed 6 weeks later from one monkey to reverse the elevated intraocular hypertension. All animals were monitored for 11 months; weekly measurements of intraocular pressure and biweekly examinations with spectral domain optical coherence tomography and disc photography were performed. Histopathology of the eye and retinal ganglion cell counts were completed at the end of the study. RESULTS: The intraocular pressure of the blocked eyes was significantly higher than that of the contralateral eyes at 1 month after the blockage (P <0.001); the mean intraocular pressure was similar to the contralateral eye from 1 week to 11 months after the microcatheter was removed in monkey A (P=0.170). The mean intraocular pressure of the blocked eyes of the remaining monkeys was significantly higher than that of the contralateral eyes throughout the follow-up period (P <0.001). The fundus imaging showed decreases in the retinal nerve fibre layer thickness, and localised defects were observed in two blocked eyes. A histological examination demonstrated that the number of retinal ganglion cells in blocked eyes of monkeys A, B, and C was significantly decreased compared with the control. CONCLUSION: Schlemm's canal blockage alone in the monkey model produces sustained elevation of intraocular pressure, which present a novel animal model for studying the pathogenesis of glaucoma.
RESUMO
The large-conductance calcium-activated potassium (BK) channel is a critical regulator and potential therapeutic target of vascular tone and architecture, and abnormal expression or dysfunction of this channel is linked to many vascular diseases. Vascular remodelling is the early pathological basis of severe vascular diseases. Delaying the progression of vascular remodelling can reduce cardiovascular events, but the pathogenesis remains unclear. To clarify the role of BK channels in vascular remodelling, we use rats with BK channel α subunit knockout (BK α â/â). The results show that BK α â/â rats have smaller inner and outer diameters, thickened aortic walls, increased fibrosis, and disordered elastic fibers of the aortas compared with WT rats. When the expression and function of BK α are inhibited in human umbilical arterial smooth muscle cells (HUASMCs), the expressions of matrix metalloproteinase 2 (MMP2), MMP9, and interleukin-6 are enhanced, while the expressions of smooth muscle cell contractile phenotype proteins are reduced. RNA sequencing, bioinformatics analysis and qPCR verification show that C1q/tumor necrosis factor-related protein 7 ( CTRP7) is the downstream target gene. Furthermore, except for that of MMPs, a similar pattern of IL-6, smooth muscle cell contractile phenotype proteins expression trend is observed after CTRP7 knockdown. Moreover, knockdown of both BK α and CTRP7 in HUASMCs activates PI3K/Akt signaling. Additionally, CTRP7 is expressed in vascular smooth muscle cells (VSMCs), and BK α deficiency activates the PI3K/Akt pathway by reducing CTRP7 level. Therefore, we first show that BK channel deficiency leads to vascular remodelling. The BK channel and CTRP7 may serve as potential targets for the treatment of cardiovascular diseases.