Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(2): 101, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231363

RESUMO

Hyaluronidase (HAase) is an important endoglycosidase involved in numerous physiological and pathological processes, such as apoptosis, senescence, and cancer progression. Simple, convenient, and sensitive detection of HAase is important for clinical diagnosis. Herein, an easy-to-operate multicolor visual sensing strategy was developed for HAase determination. The proposed sensor was composed of an enzyme-responsive hydrogel and a nanochromogenic system (gold nanobipyramids (AuNBPs)). The enzyme-responsive hydrogel, formed by polyethyleneimine-hyaluronic acid (PEI-HA), was specifically hydrolyzed with HAase, leading to the release of platinum nanoparticles (PtNPs). Subsequently, PtNPs catalyzed the mixed system of 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2 to produce TMB2+ under acidic conditions. Then, TMB2+ effectively etched the AuNBPs and resulted in morphological changes in the AuNBPs, accompanied by a blueshift in the localized surface plasmon resonance peak and vibrant colors. Therefore, HAase can be semiquantitatively determined by directly observing the color change of AuNBPs with the naked eye. On the basis of this, the method has a linear detection range of HAase concentrations between 0.6 and 40 U/mL, with a detection limit of 0.3 U/mL. In addition, our designed multicolor biosensor successfully detected the concentration of HAase in human serum samples. The results showed no obvious difference between this method and enzyme-linked immunosorbent assay, indicating the good accuracy and usability of the suggested method.


Assuntos
Benzidinas , Hialuronoglucosaminidase , Nanopartículas Metálicas , Humanos , Hidrogéis , Peróxido de Hidrogênio , Platina
2.
Anal Chem ; 94(23): 8458-8465, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35658117

RESUMO

The global spread of SARS-CoV-2 virus has severely affected human health, life, and work. Vaccine immunization is considered to be an effective means to protect the body from infection. Therefore, timely analysis of the antibody level is helpful to identify people with low immune response or attenuated antibodies so as to carry out targeted and precise vaccine booster immunization. Herein, we develop a magnetofluid-integrated multicolor immunochip, as a sample-to-answer system in a fully enclosed space, for visual analysis of neutralizing antibodies of SARS-CoV-2. Generally, this chip adopts an innovative three-dimensional two-phase system that utilizes mineral oil to block the connection between reagent wells in the vertical direction and provides a wide interface for rapid and nondestructive shuttle of magnetic beads during the immunoassay. In order to obtain visualized signal output, gold nanorods with a size-dependent color effect are used as the colorful chromogenic substrates for evaluation of the antibody level. Using this chip, the neutralizing antibodies were successfully detected in vaccine-immunized volunteers with 83.3% sensitivity and 100% specificity. Furthermore, changes in antibody levels of the same individual over time were also reflected by the multicolor assay. Overall, benefiting from simple operation, airtight safety, and nonrequirement of external equipment, this platform can provide a new point-of-care testing strategy for alleviating the shortage of medical resources and promoting epidemic control in underdeveloped areas.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/diagnóstico , COVID-19/prevenção & controle , Humanos
3.
Analyst ; 147(12): 2671-2677, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35593135

RESUMO

Photothermal biosensors with advantages of speed and high sensitivity offer alternative and reliable solutions for real-time clinical diagnosis, food safety testing and environmental monitoring. Although metallic nanoparticles are usually used for photothermal biosensors, their poor photothermal stability and potential toxicity hinder clinical applications. Taking advantage of the low cytotoxicity and remarkable photothermal effect under the low laser power of polypyrrole-based organic nanoparticles, we developed a novel photothermal biosensor with a temperature and pressure dual readout. After the formation of immunoassay sandwich structures, polypyrrole as the photothermal agent is synthesized in situ with pyrrole, HCl and Fe3+ released from magnetic Fe2O3 particles modified with detection antibody. The heterocyclic rings from polypyrrole enable photothermal performance in the NIR region. The resulting increased heat and pressure in a sealed well are measured using a digital thermometer and a portable pressure meter, respectively. Taking C-reactive protein (CRP) as a model target, the proposed strategy allowed sensitive, selective and accurate analysis of biomarkers, and showed performance comparable to that of ELISA. Overall, the dual-mode photothermal biosensor holds great potential for simple and low-cost photothermal sensing of biomarkers for point-of-care testing (POCT).


Assuntos
Técnicas Biossensoriais , Polímeros , Biomarcadores , Técnicas Biossensoriais/métodos , Polímeros/química , Pirróis/química , Temperatura
4.
Mikrochim Acta ; 185(7): 350, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29967949

RESUMO

Ligand exchange on the surface of gold nanorods (AuNRs) is widely used, but conventional methods usually require multiple centrifugation cycles to completely remove cetyltrimethylammonium bromide (CTAB). This can lead to undesired aggregation of AuNRs. A dialysis-assisted protocol is described here for ligand exchange on AuNRs. Dialysis driven by a concentration gradient is shown to be a powerful tool to separate CTAB from aqueous solutions. The concentration gradient of CTAB in a dialysis bag can avoid the possible aggregation of AuNRs that can be caused by drastic environmental changes. It also supports the rate of ligand exchange on the surfaces of the AuNRs. The modified AuNRs were employed in a lateral-flow test strip immunoassay (LFTS-IAs) for the food pathogen E. coli O157:H7 in order to study of efficiency of ligand exchange. Compared to AuNRs where ligand exchange was performed via multiple centrifugation cycles, the AuNRs prepared by dialysis-assisted ligand exchange show improved conjugation to antibody and enhanced visual signals in the test line of the LFTS-IAs. A portable strip reader (absorption wavelength = 525 nm) is used to records the testing results. The sensitivity of AuNRs modified by dialysis has been achieved even as low as 1 × 102 cfu·mL-1 in a short time (within 15 min), and the working range is 1 × 102 to 1 × 106 cfu·mL-1, which is superior over the detection performance of conventional test strip using AuNRs modified by centrifugation. Graphical abstract Schematic presentation of the ligand exchange of AuNRs. The AuNRs were dialysed in water to decrease the CTAB concentration. Then, 11-mercaptoundecanoic acid (MUA) replaces the CTAB capped on the surface of AuNRs. The modified AuNRs were employed in a lateral flow immunoassay for E. coli O157:H7.


Assuntos
Escherichia coli O157/isolamento & purificação , Ouro/química , Imunoensaio/métodos , Nanotubos/química , Animais , Cetrimônio/química , Diálise , Ligantes , Leite/microbiologia
5.
Anal Chem ; 88(10): 5097-103, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27086663

RESUMO

An ultrasensitive and specific electrochemiluminescence (ECL) biosensor has been designed for the p53 DNA sequence, which is based on cascade signal amplification of nicking endonuclease assisted target recycling and hyperbranched rolling circle amplification (HRCA). First of all, biotin modified hairpin capture DNA (HP) probe was immobilized on the surface of streptavidin magnespheres paramagnetic particles (PMPs). Target DNA hybridized with the loop portion of the HP probe, therefore unfolding HP to form a double-stranded DNA (dsDNA) containing the specific nicking site of the nicking endonuclease. Then, the nicking endonuclease recognized the specific nicking site and cleaved the HP into two pieces, liberating target DNA and the complementary sequence piece for the padlock probe. The intact target DNA would initiate the next cycle of hybridization and cleavage, thereby releasing multiple complementary sequences for the padlock probes. The liberated complementary sequences hybridized with the padlock probes, subsequently inducing the HRCA reaction and generating numerous dsDNA segments. Herein, Ru(phen)3(2+) was embedded into dsDNA and worked as ECL signal reporter. The reaction products were eventually pretreated by dialysis tube with the cutoff membrane to remove the residual Ru(phen)3(2+) in the solution for the following ECL measurements. Using this cascade amplification strategy, an ultrasensitive p53 DNA sequence detection method was developed with a wide linear range from 0.05 to 100 fM and a low detection limit of 0.02 fM. Moreover, this cascade amplified ECL biosensor had specific recognition capacity for noncomplementary and single- and double-base mismatched DNA. The proposed ECL biosensor might have a great potential in biomedical research and clinic analysis.


Assuntos
Técnicas Biossensoriais/métodos , DNA/sangue , Técnicas de Amplificação de Ácido Nucleico/métodos , Proteína Supressora de Tumor p53/genética , Sequência de Bases , DNA/genética , Sondas de DNA/química , Sondas de DNA/genética , Técnicas Eletroquímicas/métodos , Endonucleases/química , Humanos , Limite de Detecção , Medições Luminescentes
6.
Langmuir ; 32(34): 8557-64, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27482606

RESUMO

We report a very easy and effective approach for synthesizing unique palladium-on-gold supra-nanostructure (Au@Pd-SprNS)-decorated graphene oxide (GO) nanosheets. The SprNSs comprising Au nanorods as core and a unique close-packed assembly of tiny anisotropic Pd nanoparticles (NPs) as shell were homogeneously distributed on the GO surface via electrostatic self-assembly. Compared with the traditional one-pot method for synthesis of metal NPs on GO sheets, the size and shape of core-shell Au@Pd SprNSs can be finely controlled and uniformly distributed on the GO carrier. Interestingly, this Au@Pd-SprNSs/GO nanocomposite displayed high electrocatalytic activities toward the oxidation of methanol, ethanol, and formic acid, which can be attributed to the abundance of intrinsic active sites including high density of atomic steps, ledges and kinks, Au-Pd heterojunctions and cooperative action of the two metals of the SprNSs. Additionally, uniform dispersion of the SprNSs over the GO nanosheets prevent agglomeration between the SprNSs, which is of great significance to enhance the long-term stability of catalyst. This work will introduce a highly efficient Pd-based nanoelectrocatalyst to be used in fuel cell application.

7.
J Ethnopharmacol ; 325: 117826, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38296174

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: Bawei Guben Huashi Jiangzhi Decoction (BGHJ), a traditional Chinese compound formula, comprises eight Chinese medicinal herbs: Codonopsis Radix, Atractylodis Macrocephalae Rhizoma, Cassiae Semen, Lysimachiae Herba, Edgeworthiae Gardner Flos, Oryzae Semen cum Monasco, Nelumbinis Folium, and Alismatis Rhizoma. It has the therapeutic effects of improving digestive and absorptive functions of the gastrointestinal tract, reducing cholesterol levels, and helping to lose weight. Therefore, BGHJ is mainly used to treat spleen-deficient obesity (SDO) clinically. AIM OF THE STUDY: This study aims to examine the efficacy and mechanism of BGHJ in a model of SDO in rats, as well as the potentially involved constituents entering the blood and differential metabolites. METHODS: The SDO rat model was replicated utilizing a high-fat and high-sugar diet in conjunction with exhaustive swimming. Subsequently, the rats were subjected to a six-week intervention comprising varying dosages of BGHJ and a positive control, orlistat. To evaluate the efficacy of BGHJ on SDO model rats, we first measured the rats' body weight, body surface temperature, spleen index, as well as biochemical indicators in the serum and colon, and then assessed the pathological state of the colon and liver. Afterward, we analyzed the 16S rDNA gut microbiota, non-targeted serum metabolomics, and serum pharmacology to study the main active components of BGHJ and its action mechanism against SDO model rats. In addition, we constructed a network diagram for overall visualization and analysis, and experimentally verified the predicted results. Finally, we used quantitative polymerase chain reaction (qPCR) to detect the gene expression of proopiomelanocortin (POMC) and neuropeptide Y (NPY) indicators in rat hypothalamic neurons. We quantitatively targeted the detection of neurotransmitters dopamine (DA), acetylcholine (Ach), 5-hydroxytryptamine (5-HT), and noradrenaline (NA) in rat hypothalamus. RESULTS: The results demonstrated that all dosage regimens of BGHJ exhibited the capacity to moderately modulate parameters including body weight, surface temperature, spleen index, total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), glucagon-like peptide-1 (GLP-1), cholecystokinin (CCK), 5-HT, interleukin 6 (IL-6) and interleukin 17 (IL-17), while concurrently reducing hepatic lipid droplet deposition and restoring intestinal integrity. Subsequent experimental results showed that we successfully identified 27 blood components of BGHJ and identified 52 differential metabolites in SDO model rats. At the same time, the experiment proved that BGHJ could effectively inhibit the metabolic pathway of arachidonic acid. In addition, BGHJ can also restore the intestinal microbiota composition of SDO model rats. Finally, we also found that BGHJ could regulate the expression of hypothalamic neurons and neurotransmitters. CONCLUSIONS: The research revealed the main active ingredients of BGHJ and its mechanism against SDO model rats through gut microbiota, non-target serum metabolomics, and serum drug chemistry.


Assuntos
Medicamentos de Ervas Chinesas , Multiômica , Baço , Ratos , Animais , Serotonina , Obesidade/tratamento farmacológico , LDL-Colesterol , Neurotransmissores
8.
Anal Chim Acta ; 1181: 338929, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34556217

RESUMO

The dispersed gold nanoparticles (AuNPs) have weak photothermal effect in near-infrared (NIR) region. After the addition of cysteine, the AuNPs are aggregated due to the electrostatic interaction and then exhibited strong photothermal effect. At present of copper ion (Cu2+), the cysteine was catalytically oxidized into cystine, leading to the inhibition of the aggregation of AuNPs and the photothermal effect decreased. Based on this, a simple photothermal assay can be developed for Cu2+ detection using a common thermometer as readout. The change of the temperature (ΔT) of the system has a linear relationship with Cu2+ in the range of 10-300 nM with a detection limit of 7.4 nM (S/N = 3). Furthermore, through labeling the detection antibody in immunoassay with CuO nanoparticles as the source of Cu2+, a convenient photothermal immunoassay can be developed. Carcinoembryonic antigen (CEA), an important biomarker for cancer screening, was chosen as the model target because the rise of CEA level is widely present in cancer blood serum. Under the optimized conditions, ΔT has a linear relationship with CEA concentration in the range of 3.0-48.0 ng/mL. The detection limit is 1.3 ng/mL. The proposed method had been applied to detect CEA in serum samples with good agreement with the reference method used in hospital.


Assuntos
Técnicas Biossensoriais , Antígeno Carcinoembrionário/análise , Imunoensaio , Neoplasias/diagnóstico , Cobre , Cisteína , Ouro , Humanos , Limite de Detecção , Nanopartículas Metálicas , Termômetros
9.
Talanta ; 230: 122364, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33934801

RESUMO

To meet the increasing need for point-of-care testing (POCT), simple and portable readout strategies would be highly desirable. Thermometer with high accuracy and straightforward readout is an ideal tool for the development of new POCT methods. The exploration of new thermometer-based detection methods is of great significance. In this study, a simple biosensor for glucose based on the photothermal effect of gold nanorods using a simple thermometer as readout has been developed. In the presence of glucose oxidase, glucose can react with the dissolved oxygen to produce H2O2. With the help of Fe2+, H2O2 can etch gold nanorods (AuNRs) to different aspect ratios. The decrease of the aspect ratio of AuNRs leads to the blue-shift of the localized surface plasmon resonance peak, resulting in a decrease of photothermal effect in the near-infrared regions and the temperature of the system decreased. The change of the temperature has a linear relationship with the logarithm of glucose concentration in the range of 1.0-10.0 mM with a detection limit of 0.8 mM. The proposed method possesses a bias offset of -0.03 mM for glucose detection compared to the hospital method. Since many enzymatic reactions can produce H2O2, the principle can be modified to detect different targets by simply change of the enzyme used.


Assuntos
Técnicas Biossensoriais , Nanotubos , Glucose , Ouro , Peróxido de Hidrogênio , Termômetros
10.
Anal Chim Acta ; 1149: 338211, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33551050

RESUMO

Hydrogen sulfide (H2S), as a hazardous gas, is often found around dump areas. Long term exposure can cause harm to health, it is highly necessary to develop some simple and sensitive methods for on-site H2S detection. Herein, a convenient photothermal assay has been designed for the quantitation of H2S using a handheld thermometer as readout. Au@Ag nanocubes (Au@Ag NCs), a core-shell nanocomposite with strong light absorption at ∼450 nm, was chosen as a novel photothermal agent in this study. Under the laser irradiation at 450 nm, the Au@Ag NCs show a strong photothermal effect, and a significant temperature enhancement can be measured by the thermometer easily. The presence of H2S can lead to the deposition of sulfur onto Au@Ag NCs, altering the localized surface plasmon resonance absorption, size, surface composition, and morphology of Au@Ag NCs and hence leading to the reduction of photothermal effect. The change of the temperature has a linear relationship with the H2S concentration in the range of 0.5-80.0 µM with a detection limit of 0.35 µM. By combining with simple sample purification procedures, the developed method has been applied to detect H2S in garbage odor gas with satisfactory results.

11.
Anal Chim Acta ; 1110: 151-157, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32278390

RESUMO

Colorimetric platform using the aggregation of gold nanoparticles (AuNPs) is a pretty simple method for biosensing, but advanced instruments such as specterophotometer is still needed to achieve accurately quantitative readout. Aggregated AuNPs exhibit excellent photothermal properties under near-infrared laser irradiation, which is significantly different from non-aggregated AuNPs. Herein, given the different photothermal effect, we translated the AuNPs-based colorimetric assay into a photothermal assay for the quantitative detection of adenosine using a thermometer as readout. Short single-stranded DNA (ssDNA, adenosine aptamer) was adsorbed on the surface of AuNPs and hence prevented the aggregation of AuNPs under high ionic concentration. The presence of adenosine caused the structural change of ssDNA and the AuNPs became aggregated. The enhanced temperature under NIR-laser irradiation has a linear response to the concentration of adenosine in the range of 2.0-50.0 µM. The detection limit was 1.7 µM. This proposed method is portable, easy and applicable to the quantitative assay of other targets by simply replacing of the sequence of ssDNA.


Assuntos
Adenosina/análise , Aptâmeros de Nucleotídeos/análise , Ouro/química , Nanopartículas Metálicas/química , Temperatura , Adsorção , Técnicas Biossensoriais , Colorimetria , Tamanho da Partícula , Processos Fotoquímicos , Propriedades de Superfície , Termômetros
12.
Talanta ; 220: 121398, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32928417

RESUMO

A convenient photothermal biosensor was constructed for p53 DNA sequence detection based on the high discrimination capability of locked nucleic acid and high efficiency of signal amplification strategy of DNA walkers and difference photothermal effect between aggregated and dispersed gold nanoparticles (AuNPs). The presence of target activated the DNA walkers via the high affinity between target and complementary locked nucleic acid in the probe strand, resulting in the hybridization of the walker strand and substrate strand to form a specific enzyme recognition site. Under the cleavage of the endonuclease, single-stranded DNA (ssDNA) was released to the solution. Then the walker strand bound to a new substrate strand, and the next round of cleavage was triggered. The released ssDNA enhanced the stability of AuNPs against salt-induced aggregation. Given difference photothermal effects of the aggregated AuNPs and dispersed AuNPs under the near-infrared laser, the change of the temperature was detected by a common thermometer easily, which had a linear relationship with the target concentration in the range of 2.0-120.0 pM, the detection limit was 1.4 pM (S/N = 3). The proposed photothermal assay has been applied to detect p53 DNA sequence spiked complex samples with satisfying results.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Sequência de Bases , DNA/genética , Ouro , Técnicas de Amplificação de Ácido Nucleico , Hibridização de Ácido Nucleico , Oligonucleotídeos , Termômetros , Proteína Supressora de Tumor p53/genética , Andadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA