Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plants (Basel) ; 4(2): 183-95, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-27135322

RESUMO

Quantitative and qualitative lignin analyses were carried out on material from the trunks of silver birch (Betula pendula Roth) trees. Two types of material were analyzed. First, whole birch trunk pieces were cryosectioned into cork cambium, non-conductive phloem, the cambial zone (conductive phloem, cambium and differentiating xylem), lignified xylem and the previous year's xylem; material that would show differences in lignin amount and quality. Second, clonal material from one natural birch population was analyzed to show variations between individuals and between the lignin analysis methods. The different tissues showed marked differences in lignin amount and the syringyl:guaiacyl (S/G) ratio. In the non-conductive phloem tissue containing sclereids, the S/G ratio was very low, and typical for phloem fibers and in the newly-formed xylem, as well as in the previous year's xylem, the ratio lay between five and seven, typical for broadleaf tree xylem. Clonal material consisting of 88 stems was used to calculate the S/G ratios from the thioacidolysis and CuO methods, which correlated positively with an R² value of 0.43. Comparisons of the methods indicate clearly that the CuO method is a good alternative to study the monomeric composition and S/G ratio of wood lignins.

2.
J Agric Food Chem ; 62(26): 6091-9, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24927469

RESUMO

Lignin amount and subunit composition were analyzed from stems and leaf sheaths of timothy (Phleum pratense L.) clones of different in vitro digestibility. Lignin concentration in stems and leaf sheaths was higher in clones of low digestibility than those of high digestibility. No change in lignin concentration occurred in stems as digestibility decreased. Intriguingly, the lignin concentration was lower and the syringyl/guaiacyl (S/G) ratio was higher in stems compared to leaf sheaths at all developmental stages studied. The developmental-associated decrease in digestibility correlated with the increase in S units in lignin in stems and leaf sheaths and in the amounts of p-coumaric acid and ferulic acid residues in the cell wall of stems. Yields of copper oxidation products increased in stems during maturation indicating qualitative changes in the lignin structure. This correlated strongly with the developmentally linked decrease in digestibility. The information obtained is valuable for breeding and for DNA marker development.


Assuntos
Ração Animal/análise , Dieta/veterinária , Fibras na Dieta/análise , Digestão , Lignina/análise , Modelos Biológicos , Phleum/química , Animais , Clonagem de Organismos , Fibras na Dieta/metabolismo , Finlândia , Lignina/biossíntese , Lignina/química , Estrutura Molecular , Phleum/genética , Phleum/crescimento & desenvolvimento , Phleum/metabolismo , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Caules de Planta/química , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Ruminantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA