RESUMO
Myocardial remodelling, entailing cellular and molecular changes in the different components of the cardiac tissue in response to damage, underlies the morphological and structural changes leading to cardiac remodelling, which in turn contributes to cardiac dysfunction and disease progression. Since cardiac tissue is not available for histomolecular diagnosis, surrogate markers are needed for evaluating myocardial remodelling as part of the clinical management of patients with cardiac disease. In this setting, circulating biomarkers, a component of the liquid biopsy, provide a promising approach for the fast, affordable and scalable screening of large numbers of patients, allowing the detection of different pathological features related to myocardial remodelling, aiding in risk stratification and therapy monitoring. However, despite the advances in the field and the identification of numerous potential candidates, their implementation in clinical practice beyond natriuretic peptides and troponins is mostly lacking. In this review, we will discuss some biomarkers related to alterations in the main cardiac tissue compartments (cardiomyocytes, extracellular matrix, endothelium and immune cells) which have shown potential for the assessment of cardiovascular risk, cardiac remodelling and therapy effects. The hurdles and challenges for their translation into clinical practice will also be addressed.
Assuntos
Biomarcadores , Remodelação Ventricular , Humanos , Biomarcadores/sangue , Remodelação Ventricular/fisiologia , Miocárdio/patologia , Miocárdio/metabolismo , Cardiopatias/sangue , Cardiopatias/diagnóstico , Cardiopatias/terapia , Cardiopatias/fisiopatologiaRESUMO
Heart failure is a leading cause of mortality and hospitalization worldwide. Cardiac fibrosis, resulting from the excessive deposition of collagen fibers, is a common feature across the spectrum of conditions converging in heart failure. Eventually, either reparative or reactive in nature, in the long-term cardiac fibrosis contributes to heart failure development and progression and is associated with poor clinical outcomes. Despite this, specific cardiac antifibrotic therapies are lacking, making cardiac fibrosis an urgent unmet medical need. In this context, a better patient phenotyping is needed to characterize the heterogenous features of cardiac fibrosis to advance toward its personalized management. In this review, we will describe the different phenotypes associated with cardiac fibrosis in heart failure and we will focus on the potential usefulness of imaging techniques and circulating biomarkers for the non-invasive characterization and phenotyping of this condition and for tracking its clinical impact. We will also recapitulate the cardiac antifibrotic effects of existing heart failure and non-heart failure drugs and we will discuss potential strategies under preclinical development targeting the activation of cardiac fibroblasts at different levels, as well as targeting additional extracardiac processes.