Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biol Res ; 56(1): 6, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36797803

RESUMO

BACKGROUND: Despite representing the largest fraction of animal life, the number of insect species whose genome has been sequenced is barely in the hundreds. The order Dermaptera (the earwigs) suffers from a lack of genomic information despite its unique position as one of the basally derived insect groups and its importance in agroecosystems. As part of a national educational and outreach program in genomics, a plan was formulated to engage the participation of high school students in a genome sequencing project. Students from twelve schools across Chile were instructed to capture earwig specimens in their geographical area, to identify them and to provide material for genome sequencing to be carried out by themselves in their schools. RESULTS: The school students collected specimens from two cosmopolitan earwig species: Euborellia annulipes (Fam. Anisolabididae) and Forficula auricularia (Fam. Forficulidae). Genomic DNA was extracted and, with the help of scientific teams that traveled to the schools, was sequenced using nanopore sequencers. The sequence data obtained for both species was assembled and annotated. We obtained genome sizes of 1.18 Gb (F. auricularia) and 0.94 Gb (E. annulipes) with the number of predicted protein coding genes being 31,800 and 40,000, respectively. Our analysis showed that we were able to capture a high percentage (≥ 93%) of conserved proteins indicating genomes that are useful for comparative and functional analysis. We were also able to characterize structural elements such as repetitive sequences and non-coding RNA genes. Finally, functional categories of genes that are overrepresented in each species suggest important differences in the process underlying the formation of germ cells, and modes of reproduction between them, features that are one of the distinguishing biological properties that characterize these two distant families of Dermaptera. CONCLUSIONS: This work represents an unprecedented instance where the scientific and lay community have come together to collaborate in a genome sequencing project. The versatility and accessibility of nanopore sequencers was key to the success of the initiative. We were able to obtain full genome sequences of two important and widely distributed species of insects which had not been analyzed at this level previously. The data made available by the project should illuminate future studies on the Dermaptera.


Assuntos
Insetos , Animais , Insetos/genética , Análise de Sequência de DNA , Chile
2.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806287

RESUMO

The genome of the marine alga Ulva compressa was assembled using long and short reads. The genome assembly was 80.8 Mb in size and encoded 19,207 protein-coding genes. Several genes encoding antioxidant enzymes and a few genes encoding enzymes that synthesize ascorbate and glutathione were identified, showing similarity to plant and bacterial enzymes. Additionally, several genes encoding signal transduction protein kinases, such as MAPKs, CDPKS, CBLPKs, and CaMKs, were also detected, showing similarity to plants, green microalgae, and bacterial proteins. Regulatory transcription factors, such as ethylene- and ABA-responsive factors, MYB, WRKY, and HSTF, were also present and showed similarity to plant and green microalgae transcription factors. Genes encoding enzymes that synthesize ACC and ABA-aldehyde were also identified, but oxidases that synthesize ethylene and ABA, as well as enzymes that synthesize other plant hormones, were absent. Interestingly, genes involved in plant cell wall synthesis and proteins related to animal extracellular matrix were also detected. Genes encoding cyclins and CDKs were also found, and CDKs showed similarity to animal and fungal CDKs. Few genes encoding voltage-dependent calcium channels and ionotropic glutamate receptors were identified as showing similarity to animal channels. Genes encoding Transient Receptor Potential (TRP) channels were not identified, even though TRPs have been experimentally detected, indicating that the genome is not yet complete. Thus, protein-coding genes present in the genome of U. compressa showed similarity to plant and green microalgae, but also to animal, bacterial, and fungal genes.


Assuntos
Clorófitas , Microalgas , Ulva , Animais , Clorófitas/genética , Clorófitas/metabolismo , Cobre/metabolismo , Etilenos/metabolismo , Genes Fúngicos , Microalgas/metabolismo , Fatores de Transcrição/metabolismo
3.
Sci Total Environ ; 916: 170326, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266720

RESUMO

Seawater desalination by reverse osmosis is growing exponentially due to water scarcity. Byproducts of this process (e.g. brines), are generally discharged directly into the coastal ecosystem, causing detrimental effects, on benthic organisms. Understanding the cellular stress response of these organisms (biomarkers), could be crucial for establishing appropriate salinity thresholds for discharged brines. Early stress biomarkers can serve as valuable tools for monitoring the health status of brine-impacted organisms, enabling the prediction of long-term irreversible damage caused by the desalination industry. In this study, we conducted laboratory-controlled experiments to assess cellular and molecular biomarkers against brine exposure in two salinity-sensitive Mediterranean seagrasses: Posidonia oceanica and Cymodocea nodosa. Treatments involved exposure to 39, 41, and 43 psu, for 6 h and 7 days. Results indicated that photosynthetic performance remained unaffected across all treatments. However, under 43 psu, P. oceanica and C. nodosa exhibited lipid oxidative damage, which occurred earlier in P. oceanica. Additionally, P. oceanica displayed an antioxidant response at higher salinities by accumulating phenolic compounds within 6 h and ascorbate within 7 d; whereas for C. nodosa the predominant antioxidant mechanisms were phenolic compounds accumulation and total radical scavenging activity, which was evident after 7 d of brines exposure. Finally, transcriptomic analyses in P. oceanica exposed to 43 psu for 7 days revealed a poor up-regulation of genes associated with brassinosteroid response and abiotic stress response, while a high down-regulation of genes related to primary metabolism was detected. In C. nodosa, up-regulated genes were involved in DNA repair, cell cycle regulation, and reproduction, while down-regulated genes were mainly associated with photosynthesis and ribosome assembly. Overall, these findings suggest that 43 psu is a critical salinity-damage threshold for both seagrasses; and despite the moderate overexpression of several transcripts that could confer salt tolerance, genes involved in essential biological processes were severely downregulated.


Assuntos
Alismatales , Ecossistema , Sais , Antioxidantes/metabolismo , Alismatales/fisiologia , Perfilação da Expressão Gênica , Mar Mediterrâneo
4.
Structure ; 32(6): 812-823.e4, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38513659

RESUMO

Mollusk hemocyanins, among the largest known proteins, are used as immunostimulants in biomedical and clinical applications. The hemocyanin of the Chilean gastropod Concholepas concholepas (CCH) exhibits unique properties, which makes it safe and effective for human immunotherapy, as observed in animal models of bladder cancer and melanoma, and dendritical cell vaccine trials. Despite its potential, the structure and amino acid sequence of CCH remain unknown. This study reports two sequence fragments of CCH, representing three complete functional units (FUs). We also determined the high-resolution (1.5 Å) X-ray crystal structure of an "FU-g type" from the CCHB subunit. This structure enables in-depth analysis of chemical interactions at the copper-binding center and unveils an unusual, truncated N-glycosylation pattern. These features are linked to eliciting more robust immunological responses in animals, offering insights into CCH's enhanced immunostimulatory properties and opening new avenues for its potential applications in biomedical research and therapies.


Assuntos
Sequência de Aminoácidos , Hemocianinas , Modelos Moleculares , Hemocianinas/química , Hemocianinas/imunologia , Animais , Cristalografia por Raios X , Glicosilação , Sítios de Ligação , Gastrópodes/imunologia , Gastrópodes/química , Cobre/química , Moluscos/imunologia , Ligação Proteica
5.
Biol. Res ; 56: 6-6, 2023. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1429907

RESUMO

BACKGROUND: Despite representing the largest fraction of animal life, the number of insect species whose genome has been sequenced is barely in the hundreds. The order Dermaptera (the earwigs) suffers from a lack of genomic information despite its unique position as one of the basally derived insect groups and its importance in agroecosystems. As part of a national educational and outreach program in genomics, a plan was formulated to engage the participation of high school students in a genome sequencing project. Students from twelve schools across Chile were instructed to capture earwig specimens in their geographical area, to identify them and to provide material for genome sequencing to be carried out by themselves in their schools. RESULTS: The school students collected specimens from two cosmopolitan earwig species: Euborellia annulipes (Fam. Anisolabididae) and Forficula auricularia (Fam. Forficulidae). Genomic DNA was extracted and, with the help of scientific teams that traveled to the schools, was sequenced using nanopore sequencers. The sequence data obtained for both species was assembled and annotated. We obtained genome sizes of 1.18 Gb (F. auricularia) and 0.94 Gb (E. annulipes) with the number of predicted protein coding genes being 31,800 and 40,000, respectively. Our analysis showed that we were able to capture a high percentage (≥ 93%) of conserved proteins indicating genomes that are useful for comparative and functional analysis. We were also able to characterize structural elements such as repetitive sequences and non-coding RNA genes. Finally, functional categories of genes that are overrepresented in each species suggest important differences in the process underlying the formation of germ cells, and modes of reproduction between them, features that are one of the distinguishing biological properties that characterize these two distant families of Dermaptera. CONCLUSIONS: This work represents an unprecedented instance where the scientific and lay community have come together to collaborate in a genome sequencing project. The versatility and accessibility of nanopore sequencers was key to the success of the initiative. We were able to obtain full genome sequences of two important and widely distributed species of insects which had not been analyzed at this level previously. The data made available by the project should illuminate future studies on the Dermaptera.


Assuntos
Animais , Insetos/genética , Chile , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA