Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Mol Biol Evol ; 40(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36656997

RESUMO

Studying the evolutionary history of gene families is a challenging and exciting task with a wide range of implications. In addition to exploring fundamental questions about the origin and evolution of genes, disentangling their evolution is also critical to those who do functional/structural studies to allow a deeper and more precise interpretation of their results in an evolutionary context. The sirtuin gene family is a group of genes that are involved in a variety of biological functions mostly related to aging. Their duplicative history is an open question, as well as the definition of the repertoire of sirtuin genes among vertebrates. Our results show a well-resolved phylogeny that represents an improvement in our understanding of the duplicative history of the sirtuin gene family. We identified a new sirtuin gene family member (SIRT3.2) that was apparently lost in the last common ancestor of amniotes but retained in all other groups of jawed vertebrates. According to our experimental analyses, elephant shark SIRT3.2 protein is located in mitochondria, the overexpression of which leads to an increase in cellular levels of ATP. Moreover, in vitro analysis demonstrated that it has deacetylase activity being modulated in a similar way to mammalian SIRT3. Our results indicate that there are at least eight sirtuin paralogs among vertebrates and that all of them can be traced back to the last common ancestor of the group that existed between 676 and 615 millions of years ago.


Assuntos
Sirtuína 3 , Sirtuínas , Animais , Sirtuínas/genética , Sirtuína 3/genética , Evolução Molecular , Vertebrados/genética , Filogenia , Mamíferos
2.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36982549

RESUMO

Aging is a physiological process that generates progressive decline in many cellular functions. There are many theories of aging, and one of great importance in recent years is the mitochondrial theory of aging, in which mitochondrial dysfunction that occurs at advanced age could be responsible for the aged phenotype. In this context, there is diverse information about mitochondrial dysfunction in aging, in different models and different organs. Specifically, in the brain, different studies have shown mitochondrial dysfunction mainly in the cortex; however, until now, no study has shown all the defects in hippocampal mitochondria in aged female C57BL/6J mice. We performed a complete analysis of mitochondrial function in 3-month-old and 20-month-old (mo) female C57BL/6J mice, specifically in the hippocampus of these animals. We observed an impairment in bioenergetic function, indicated by a decrease in mitochondrial membrane potential, O2 consumption, and mitochondrial ATP production. Additionally, there was an increase in ROS production in the aged hippocampus, leading to the activation of antioxidant signaling, specifically the Nrf2 pathway. It was also observed that aged animals had deregulation of calcium homeostasis, with more sensitive mitochondria to calcium overload and deregulation of proteins related to mitochondrial dynamics and quality control processes. Finally, we observed a decrease in mitochondrial biogenesis with a decrease in mitochondrial mass and deregulation of mitophagy. These results show that during the aging process, damaged mitochondria accumulate, which could contribute to or be responsible for the aging phenotype and age-related disabilities.


Assuntos
Cálcio , Mitocôndrias , Camundongos , Animais , Feminino , Cálcio/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Metabolismo Energético , Oxirredução , Hipocampo/metabolismo , Homeostase
3.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674622

RESUMO

In Octodon degus, the aging process is not equivalent between sexes and worsens for females. To determine the beginning of detrimental features in females and the ways in which to improve them, we compared adult females (36 months old) and aged females (72 months old) treated with Andrographolide (ANDRO), the primary ingredient in Andrographis paniculata. Our behavioral data demonstrated that age does not affect recognition memory and preference for novel experiences, but ANDRO increases these at both ages. Sociability was also not affected by age; however, social recognition and long-term memory were lower in the aged females than adults but were restored with ANDRO. The synaptic physiology data from brain slices showed that adults have more basal synaptic efficiency than aged degus; however, ANDRO reduced basal activity in adults, while it increased long-term potentiation (LTP). Instead, ANDRO increased the basal synaptic activity and LTP in aged females. Age-dependent changes were also observed in synaptic proteins, where aged females have higher synaptotagmin (SYT) and lower postsynaptic density protein-95 (PSD95) levels than adults. ANDRO increased the N-methyl D-aspartate receptor subtype 2B (NR2B) at both ages and the PSD95 and Homer1 only in the aged. Thus, females exposed to long-term ANDRO administration show improved complex behaviors related to age-detrimental effects, modulating mechanisms of synaptic transmission, and proteins.


Assuntos
Diterpenos , Octodon , Animais , Feminino , Octodon/metabolismo , Encéfalo/metabolismo , Diterpenos/farmacologia , Diterpenos/metabolismo , Reconhecimento Psicológico
4.
Handb Exp Pharmacol ; 269: 357-382, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34486097

RESUMO

The cellular processes regulated by WNT signaling have been mainly studied during embryonic development and cancer. In the last two decades, the role of WNT in the adult central nervous system has been the focus of interest in our laboratory. In this chapter, we will be summarized ß-catenin-dependent and -independent WNT pathways, then we will be revised WNT signaling function at the pre- and post-synaptic level. Concerning Alzheimer's disease (AD) initially, we found that WNT/ß-catenin signaling activation exerts a neuroprotective mechanism against the amyloid ß (Αß) peptide toxicity. Later, we found that WNT/ß-catenin participates in Tau phosphorylation and in learning and memory. In the last years, we demonstrated that WNT/ß-catenin signaling is instrumental in the amyloid precursor protein (APP) processing and that WNT/ß-catenin dysfunction results in Aß production and aggregation. We highlight the importance of WNT/ß-catenin signaling dysfunction in the onset of AD and propose that the loss of WNT/ß-catenin signaling is a triggering factor of AD. The WNT pathway is therefore positioned as a therapeutic target for AD and could be a valid concept for improving AD therapy. We think that metabolism and inflammation will be relevant when defining future research in the context of WNT signaling and the neurodegeneration associated with AD.


Assuntos
Doença de Alzheimer , Via de Sinalização Wnt , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide , Humanos , Fosforilação
5.
J Neurochem ; 144(4): 443-465, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29240990

RESUMO

Alzheimer's disease (AD) is a neurodegenerative pathology characterized by aggregates of amyloid-ß (Aß) and phosphorylated tau protein, synaptic dysfunction, and spatial memory impairment. The Wnt signaling pathway has several key functions in the adult brain and has been associated with AD, mainly as a neuroprotective factor against Aß toxicity and tau phosphorylation. However, dysfunction of Wnt/ß-catenin signaling might also play a role in the onset and development of the disease. J20 APPswInd transgenic (Tg) mouse model of AD was treated i.p. with various Wnt signaling inhibitors for 10 weeks during pre-symptomatic stages. Then, cognitive, biochemical and histochemical analyses were performed. Wnt signaling inhibitors induced severe changes in the hippocampus, including alterations in Wnt pathway components and loss of Wnt signaling function, severe cognitive deficits, increased tau phosphorylation and Aß1-42 peptide levels, decreased Aß42/Aß40 ratio and Aß1-42 concentration in the cerebral spinal fluid, and high levels of soluble Aß species and synaptotoxic oligomers in the hippocampus, together with changes in the amount and size of senile plaques. More important, we also observed severe alterations in treated wild-type (WT) mice, including behavioral impairment, tau phosphorylation, increased Aß1-42 in the hippocampus, decreased Aß1-42 in the cerebral spinal fluid, and hippocampal dysfunction. Wnt inhibition accelerated the development of the pathology in a Tg AD mouse model and contributed to the development of Alzheimer's-like changes in WT mice. These results indicate that Wnt signaling plays important roles in the structure and function of the adult hippocampus and suggest that inhibition of the Wnt signaling pathway is an important factor in the pathogenesis of AD. Read the Editorial Highlight for this article on page 356.


Assuntos
Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Via de Sinalização Wnt/efeitos dos fármacos , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/líquido cefalorraquidiano , Animais , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/psicologia , Humanos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Fragmentos de Peptídeos/metabolismo , Fosforilação , Placa Amiloide/patologia , Reconhecimento Psicológico/efeitos dos fármacos , Proteínas tau/metabolismo
6.
J Neurochem ; 139(6): 1175-1191, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27778356

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disorder and the most frequent cause of dementia in the aged population. According to the amyloid hypothesis, the amyloid-ß (Aß) peptide plays a key role in the pathogenesis of AD. Aß is generated from the amyloidogenic processing of amyloid precursor protein and can aggregate to form oligomers, which have been described as a major synaptotoxic agent in neurons. Dysfunction of Wnt signaling has been linked to increased Aß formation; however, several other studies have argued against this possibility. Herein, we use multiple experimental approaches to confirm that the inhibition of Wnt signaling promoted the amyloidogenic proteolytic processing of amyloid precursor protein. We also demonstrate that inhibiting Wnt signaling increases the production of the Aß42 peptide, the Aß42 /Aß40 ratio, and the levels of Aß oligomers such as trimers and tetramers. Moreover, we show that activating Wnt signaling reduces the levels of Aß42 and its aggregates, increases Aß40 levels, and reduces the Aß42 /Aß40 ratio. Finally, we show that the protective effects observed in response to activation of the Wnt pathway rely on ß-catenin-dependent transcription, which is demonstrated experimentally via the expression of various 'mutant forms of ß-catenin'. Together, our findings indicate that loss of the Wnt signaling pathway may contribute to the pathogenesis of AD.


Assuntos
Peptídeos beta-Amiloides/biossíntese , Precursor de Proteína beta-Amiloide/biossíntese , Fragmentos de Peptídeos/biossíntese , Agregados Proteicos/fisiologia , Via de Sinalização Wnt/fisiologia , Animais , Células CHO , Cricetinae , Cricetulus , Diterpenos/farmacologia , Humanos , Camundongos , Agregados Proteicos/efeitos dos fármacos , Proteínas Wnt/agonistas , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/biossíntese , Via de Sinalização Wnt/efeitos dos fármacos , Proteína Wnt-5a/agonistas , Proteína Wnt-5a/antagonistas & inibidores , Proteína Wnt-5a/biossíntese
7.
Neurobiol Dis ; 86: 109-20, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26626079

RESUMO

The dystrophin-associated glycoprotein complex (DGC) that connects the cytoskeleton, plasma membrane and the extracellular matrix has been related to the maintenance and stabilization of channels and synaptic receptors, which are both essential for synaptogenesis and synaptic transmission. The dystrophin-deficient (mdx) mouse model of Duchenne muscular dystrophy (DMD) exhibits a significant reduction in hippocampal GABA efficacy, which may underlie the altered synaptic function and abnormal hippocampal long-term plasticity exhibited by mdx mice. Emerging studies have implicated Wnt signaling in the modulation of synaptic efficacy, neuronal plasticity and cognitive function. We report here that the activation of the non-canonical Wnt-5a pathway and Andrographolide, improves hippocampal mdx GABAergic efficacy by increasing the number of inhibitory synapses and GABA(A) receptors or GABA release. These results indicate that Wnt signaling modulates GABA synaptic efficacy and could be a promising novel target for DMD cognitive therapy.


Assuntos
Hipocampo/metabolismo , Hipocampo/fisiopatologia , Potenciais Pós-Sinápticos Inibidores , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/fisiopatologia , Neurônios/fisiologia , Via de Sinalização Wnt , Animais , Diterpenos/administração & dosagem , Hipocampo/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Receptores de GABA-A/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
8.
Biochem J ; 466(2): 415-30, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25423492

RESUMO

Wnt/ß-catenin signalling is an important pathway that regulates multiple biological processes, including cell adhesion and determination of cell fate during animal development; in the adult nervous system it regulates the structure and function of synapses. Wnt-signalling dysfunction is associated with several neurodegenerative diseases such as schizophrenia and Alzheimer's disease. The use of natural compounds is an interesting strategy in the search for drugs with the therapeutic potential to activate this signalling pathway. In the present study, we report that andrographolide (ANDRO), a component of Andrographis paniculata, is a potent activator of Wnt signalling. Our results indicate that ANDRO activates this pathway, inducing the transcription of Wnt target genes by a mechanism that bypasses Wnt ligand binding to its receptor. In vitro kinase assays demonstrate that ANDRO inhibits glycogen synthase kinase (GSK)-3ß by a non-ATP-competitive, substrate-competitive mode of action. In silico analyses suggest that ANDRO interacts with the substrate-binding site of GSK-3ß. Finally, we demonstrated that the increase seen in the levels of GSK-3ß phosphorylated at Ser9 is the result of an autoregulatory mechanism of the kinase in vivo, although not through activation of protein phosphatase type 1. Our results suggest that ANDRO could be used as a potential therapeutic drug for disorders caused by Wnt-signalling dysfunction such as neurodegenerative diseases.


Assuntos
Diterpenos/farmacologia , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Nootrópicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Ligação Competitiva , Domínio Catalítico , Células Cultivadas , Diterpenos/química , Diterpenos/metabolismo , Quinase 3 da Glicogênio Sintase/química , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Hipocampo/citologia , Hipocampo/metabolismo , Técnicas In Vitro , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Neurônios/citologia , Neurônios/metabolismo , Nootrópicos/química , Nootrópicos/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ratos , Serina/química , Serina/metabolismo
9.
Proc Natl Acad Sci U S A ; 109(34): 13835-40, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22869717

RESUMO

Alzheimer's disease (AD) is an age-related neurodegenerative disorder associated with progressive memory loss, severe dementia, and hallmark neuropathological markers, such as deposition of amyloid-ß (Aß) peptides in senile plaques and accumulation of hyperphosphorylated tau proteins in neurofibrillary tangles. Recent evidence obtained from transgenic mouse models suggests that soluble, nonfibrillar Aß oligomers may induce synaptic failure early in AD. Despite their undoubted value, these transgenic models rely on genetic manipulations that represent the inherited and familial, but not the most abundant, sporadic form of AD. A nontransgenic animal model that still develops hallmarks of AD would be an important step toward understanding how sporadic AD is initiated. Here we show that starting between 12 and 36 mo of age, the rodent Octodon degus naturally develops neuropathological signs of AD, such as accumulation of Aß oligomers and phosphorylated tau proteins. Moreover, age-related changes in Aß oligomers and tau phosphorylation levels are correlated with decreases in spatial and object recognition memory, postsynaptic function, and synaptic plasticity. These findings validate O. degus as a suitable natural model for studying how sporadic AD may be initiated.


Assuntos
Doença de Alzheimer/fisiopatologia , Transtornos da Memória/metabolismo , Memória/fisiologia , Octodon/fisiologia , Envelhecimento , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Aprendizagem em Labirinto , Modelos Biológicos , Modelos Neurológicos , Plasticidade Neuronal , Reconhecimento Fisiológico de Modelo , Fosforilação , Fatores de Tempo , Proteínas tau/metabolismo
10.
Neural Plast ; 2015: 935403, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26798521

RESUMO

Andrographolide (ANDRO) is a labdane diterpenoid component of Andrographis paniculata widely used for its anti-inflammatory properties. We have recently determined that ANDRO is a competitive inhibitor of glycogen synthase kinase-3ß (GSK-3ß), a key enzyme of the Wnt/ß-catenin signaling cascade. Since this signaling pathway regulates neurogenesis in the adult hippocampus, we evaluated whether ANDRO stimulates this process. Treatment with ANDRO increased neural progenitor cell proliferation and the number of immature neurons in the hippocampus of 2- and 10-month-old mice compared to age-matched control mice. Moreover, ANDRO stimulated neurogenesis increasing the number of newborn dentate granule neurons. Also, the effect of ANDRO was evaluated in the APPswe/PS1ΔE9 transgenic mouse model of Alzheimer's disease. In these mice, ANDRO increased cell proliferation and the density of immature neurons in the dentate gyrus. Concomitantly with the increase in neurogenesis, ANDRO induced the activation of the Wnt signaling pathway in the hippocampus of wild-type and APPswe/PS1ΔE9 mice determined by increased levels of ß-catenin, the inactive form of GSK-3ß, and NeuroD1, a Wnt target gene involved in neurogenesis. Our findings indicate that ANDRO stimulates neurogenesis in the adult hippocampus suggesting that this drug could be used as a therapy in diseases in which neurogenesis is affected.


Assuntos
Giro Denteado/efeitos dos fármacos , Giro Denteado/fisiologia , Diterpenos/administração & dosagem , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/fisiologia , Neurogênese/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Camundongos , Camundongos Endogâmicos C57BL , Via de Sinalização Wnt/efeitos dos fármacos
11.
Ageing Res Rev ; 101: 102524, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39369797

RESUMO

Aging is a multifaceted biological process characterized by progressive molecular and cellular damage accumulation. The brain hippocampus undergoes functional deterioration with age, caused by cellular deficits, decreased synaptic communication, and neuronal death, ultimately leading to memory impairment. One of the factors contributing to this dysfunction is the loss of mitochondrial function. In neurons, mitochondria are categorized into synaptic and non-synaptic pools based on their location. Synaptic mitochondria, situated at the synapses, play a crucial role in maintaining neuronal function and synaptic plasticity, whereas non-synaptic mitochondria are distributed throughout other neuronal compartments, supporting overall cellular metabolism and energy supply. The proper function of synaptic mitochondria is essential for synaptic transmission as they provide the energy required and regulate calcium homeostasis at the communication sites between neurons. Maintaining the structure and functionality of synaptic mitochondria involves intricate processes, including mitochondrial dynamics such as fission, fusion, transport, and quality control mechanisms. These processes ensure that mitochondria remain functional, replace damaged organelles, and sustain cellular homeostasis at synapses. Notably, deficiencies in these mechanisms have been increasingly associated with aging and the onset of age-related neurodegenerative diseases. Synaptic mitochondria from the hippocampus are particularly vulnerable to age-related changes, including alterations in morphology and a decline in functionality, which significantly contribute to decreased synaptic activity during aging. This review comprehensively explores the critical roles that mitochondrial dynamics and quality control mechanisms play in preserving synaptic activity and neuronal function. It emphasizes the emerging evidence linking the deterioration of synaptic mitochondria to the aging process and the development of neurodegenerative diseases, highlighting the importance of these organelles from hippocampal neurons as potential therapeutic targets for mitigating cognitive decline and synaptic degeneration associated with aging. The novelty of this review lies in its focus on the unique vulnerability of hippocampal synaptic mitochondria to aging, underscoring their importance in maintaining brain function across the lifespan.


Assuntos
Envelhecimento , Hipocampo , Mitocôndrias , Sinapses , Humanos , Hipocampo/fisiologia , Hipocampo/metabolismo , Mitocôndrias/metabolismo , Envelhecimento/fisiologia , Envelhecimento/metabolismo , Sinapses/fisiologia , Sinapses/metabolismo , Animais
12.
Neurol Int ; 16(5): 1066-1085, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39452682

RESUMO

Background/Objectives: Aging has been extensively studied, with a growing interest in memory impairment by a neurobiological approach. Mitochondrial dysfunction is a hallmark of aging, contributing to the aging phenotype; therefore, mitochondrial interventions seem fundamental. The diet is a physiological approximation for modifying mitochondria, which could impact the age-related phenotype. Methods: We studied two diets with low-carbohydrate and high-fat compositions, differing in the amount of protein and the fat type disposable-the atherogenic diet Cocoa (high protein/high saturated fat/high cholesterol) and the South Beach diet (very high-protein/high-unsaturated fat)-on oxidative stress, mitochondrial state, and hippocampus-dependent memory in 3-month-old Senescence-Accelerated Mouse Model (SAMP8) seed over 3 months to determine their pro- or anti-aging effects. Results: Despite its bad reputation, the Cocoa diet reduces the reactive oxygen species (ROS) content without impacting the energy state and hippocampus-dependent spatial acuity. In contrast to the beneficial impact proposed for the South Beach diet, it induced a pro-aging phenotype, increasing oxidative damage and the levels of NR2B subunit of the NMDA, impairing energy and spatial acuity. Surprisingly, despite the negative changes observed with both diets, this led to subtle memory impairment, suggesting the activation of compensatory mechanisms preventing more severe cognitive decline. Conclusions: Our results demonstrated that diets usually considered good could be detrimental to the onset of aging. Also, probably due to the brain plasticity of non-aged animals, they compensate for the damage, preventing a more aggravated phenotype. Nevertheless, these silent changes could predispose or increase the risk of suffering pathologies at advanced age.

13.
Cells ; 13(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38391929

RESUMO

In this study, we investigated the inter-organelle communication between the Golgi apparatus (GA) and mitochondria. Previous observations suggest that GA-derived vesicles containing phosphatidylinositol 4-phosphate (PI(4)P) play a role in mitochondrial fission, colocalizing with DRP1, a key protein in this process. However, the functions of these vesicles and potentially associated proteins remain unknown. GOLPH3, a PI(4)P-interacting GA protein, is elevated in various types of solid tumors, including breast cancer, yet its precise role is unclear. Interestingly, GOLPH3 levels influence mitochondrial mass by affecting cardiolipin synthesis, an exclusive mitochondrial lipid. However, the mechanism by which GOLPH3 influences mitochondria is not fully understood. Our live-cell imaging analysis showed GFP-GOLPH3 associating with PI(4)P vesicles colocalizing with YFP-DRP1 at mitochondrial fission sites. We tested the functional significance of these observations with GOLPH3 knockout in MDA-MB-231 cells of breast cancer, resulting in a fragmented mitochondrial network and reduced bioenergetic function, including decreased mitochondrial ATP production, mitochondrial membrane potential, and oxygen consumption. Our findings suggest a potential negative regulatory role for GOLPH3 in mitochondrial fission, impacting mitochondrial function and providing insights into GA-mitochondria communication.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Células MDA-MB-231 , Dinâmica Mitocondrial , Complexo de Golgi/metabolismo , Metabolismo Energético , Proteínas de Membrana/metabolismo
14.
Front Aging Neurosci ; 15: 1250342, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37810621

RESUMO

Social interactions have a significant impact on health in humans and animal models. Social isolation initiates a cascade of stress-related physiological disorders and stands as a significant risk factor for a wide spectrum of morbidity and mortality. Indeed, social isolation stress (SIS) is indicative of cognitive decline and risk to neurodegenerative conditions, including Alzheimer's disease (AD). This study aimed to evaluate the impact of chronic, long-term SIS on the propensity to develop hallmarks of AD in young degus (Octodon degus), a long-lived animal model that mimics sporadic AD naturally. We examined inflammatory factors, bioenergetic status, reactive oxygen species (ROS), oxidative stress, antioxidants, abnormal proteins, tau protein, and amyloid-ß (Aß) levels in the hippocampus of female and male degus that were socially isolated from post-natal and post-weaning until adulthood. Additionally, we explored the effect of re-socialization following chronic isolation on these protein profiles. Our results showed that SIS promotes a pro-inflammatory scenario more severe in males, a response that was partially mitigated by a period of re-socialization. In addition, ATP levels, ROS, and markers of oxidative stress are severely affected in female degus, where a period of re-socialization fails to restore them as it does in males. In females, these effects might be linked to antioxidant enzymes like catalase, which experience a decline across all SIS treatments without recovery during re-socialization. Although in males, a previous enzyme in antioxidant pathway diminishes in all treatments, catalase rebounds during re-socialization. Notably, males have less mature neurons after chronic isolation, whereas phosphorylated tau and all detectable forms of Aß increased in both sexes, persisting even post re-socialization. Collectively, these findings suggest that long-term SIS may render males more susceptible to inflammatory states, while females are predisposed to oxidative states. In both scenarios, the accumulation of tau and Aß proteins increase the individual susceptibility to early-onset neurodegenerative conditions such as AD.

15.
Neural Regen Res ; 17(8): 1645-1651, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35017410

RESUMO

During normal aging, there is a decline in all physiological functions in the organism. One of the most affected organs is the brain, where neurons lose their proper synaptic function leading to cognitive impairment. Aging is one of the main risk factors for the development of neurodegenerative diseases, such as Alzheimer's disease. One of the main responsible factors for synaptic dysfunction in aging and neurodegenerative diseases is the accumulation of abnormal proteins forming aggregates. The most studied brain aggregates are the senile plaques, formed by Aß peptide; however, the aggregates formed by phosphorylated tau protein have gained relevance in the last years by their toxicity. It is reported that neurons undergo severe mitochondrial dysfunction with age, with a decrease in adenosine 5'-triphosphate production, loss of the mitochondrial membrane potential, redox imbalance, impaired mitophagy, and loss of calcium buffer capacity. Interestingly, abnormal tau protein interacts with several mitochondrial proteins, suggesting that it could induce mitochondrial dysfunction. Nevertheless, whether tau-mediated mitochondrial dysfunction occurs indirectly or directly is still unknown. A recent study of our laboratory shows that phosphorylated tau at Ser396/404 (known as PHF-1), an epitope commonly related to pathology, accumulates inside mitochondria during normal aging. This accumulation occurs preferentially in synaptic mitochondria, which suggests that it may contribute to the synaptic failure and cognitive impairment seen in aged individuals. Here, we review the main tau modifications promoting mitochondrial dysfunction, and the possible mechanism involved. Also, we discuss the evidence that supports the possibility that phosphorylated tau accumulation in synaptic mitochondria promotes synaptic and cognitive impairment in aging. Finally, we show evidence and argue about the presence of phosphorylated tau PHF-1 inside mitochondria in Alzheimer's disease, which could be considered as an early event in the neurodegenerative process. Thus, phosphorylated tau PHF-1 inside the mitochondria could be considered such a potential therapeutic target to prevent or attenuate age-related cognitive impairment.

16.
Sci Rep ; 11(1): 4448, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627790

RESUMO

Brain aging is a natural process characterized by cognitive decline and memory loss. This impairment is related to mitochondrial dysfunction and has recently been linked to the accumulation of abnormal proteins in the hippocampus. Age-related mitochondrial dysfunction could be induced by modified forms of tau. Here, we demonstrated that phosphorylated tau at Ser 396/404 sites, epitope known as PHF-1, is increased in the hippocampus of aged mice at the same time that oxidative damage and mitochondrial dysfunction are observed. Most importantly, we showed that tau PHF-1 is located in hippocampal mitochondria and accumulates in the mitochondria of old mice. Finally, since two mitochondrial populations were found in neurons, we evaluated tau PHF-1 levels in both non-synaptic and synaptic mitochondria. Interestingly, our results revealed that tau PHF-1 accumulates primarily in synaptic mitochondria during aging, and immunogold electron microscopy and Proteinase K protection assays demonstrated that tau PHF-1 is located inside mitochondria. These results demonstrated the presence of phosphorylated tau at PHF-1 commonly related to tauopathy, inside the mitochondria from the hippocampus of healthy aged mice for the first time. Thus, this study strongly suggests that synaptic mitochondria could be damaged by tau PHF-1 accumulation inside this organelle, which in turn could result in synaptic mitochondrial dysfunction, contributing to synaptic failure and memory loss at an advanced age.


Assuntos
Envelhecimento/metabolismo , Hipocampo/metabolismo , Mitocôndrias/metabolismo , Fosforilação/fisiologia , Serina/metabolismo , Proteínas tau/metabolismo , Animais , Disfunção Cognitiva/metabolismo , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Tauopatias/metabolismo
17.
J Alzheimers Dis ; 84(4): 1391-1414, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34719499

RESUMO

Alzheimer's disease (AD) is characterized by cognitive impairment and the presence of neurofibrillary tangles and senile plaques in the brain. Neurofibrillary tangles are composed of hyperphosphorylated tau, while senile plaques are formed by amyloid-ß (Aß) peptide. The amyloid hypothesis proposes that Aß accumulation is primarily responsible for the neurotoxicity in AD. Multiple Aß-mediated toxicity mechanisms have been proposed including mitochondrial dysfunction. However, it is unclear if it precedes Aß accumulation or if is a consequence of it. Aß promotes mitochondrial failure. However, amyloid ß precursor protein (AßPP) could be cleaved in the mitochondria producing Aß peptide. Mitochondrial-produced Aß could interact with newly formed ones or with Aß that enter the mitochondria, which may induce its oligomerization and contribute to further mitochondrial alterations, resulting in a vicious cycle. Another explanation for AD is the tau hypothesis, in which modified tau trigger toxic effects in neurons. Tau induces mitochondrial dysfunction by indirect and apparently by direct mechanisms. In neurons mitochondria are classified as non-synaptic or synaptic according to their localization, where synaptic mitochondrial function is fundamental supporting neurotransmission and hippocampal memory formation. Here, we focus on synaptic mitochondria as a primary target for Aß toxicity and/or formation, generating toxicity at the synapse and contributing to synaptic and memory impairment in AD. We also hypothesize that phospho-tau accumulates in mitochondria and triggers dysfunction. Finally, we discuss that synaptic mitochondrial dysfunction occur in aging and correlates with age-related memory loss. Therefore, synaptic mitochondrial dysfunction could be a predisposing factor for AD or an early marker of its onset.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/metabolismo , Mitocôndrias/metabolismo , Sinapses/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Transtornos da Memória/patologia , Emaranhados Neurofibrilares , Neurônios/metabolismo , Placa Amiloide
18.
Front Neurosci ; 14: 586710, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33679286

RESUMO

Aging is an irreversible process and the primary risk factor for the development of neurodegenerative diseases, such as Alzheimer's disease (AD). Mitochondrial impairment is a process that generates oxidative damage and ATP deficit; both factors are important in the memory decline showed during normal aging and AD. Tau is a microtubule-associated protein, with a strong influence on both the morphology and physiology of neurons. In AD, tau protein undergoes post-translational modifications, which could play a relevant role in the onset and progression of this disease. Also, these abnormal forms of tau could be present during the physiological aging that could be related to memory impairment present during this stage. We previously showed that tau ablation improves mitochondrial function and cognitive abilities in young wild-type mice. However, the possible contribution of tau during aging that could predispose to the development of AD is unclear. Here, we show that tau deletion prevents cognitive impairment and improves mitochondrial function during normal aging as indicated by a reduction in oxidative damage and increased ATP production. Notably, we observed a decrease in cyclophilin-D (CypD) levels in aged tau-/- mice, resulting in increased calcium buffering and reduced mitochondrial permeability transition pore (mPTP) opening. The mPTP is a mitochondrial structure, whose opening is dependent on CypD expression, and new evidence suggests that this could play an essential role in the neurodegenerative process showed during AD. In contrast, hippocampal CypD overexpression in aged tau-/- mice impairs mitochondrial function evidenced by an ATP deficit, increased mPTP opening, and memory loss; all effects were observed in the AD pathology. Our results indicate that the absence of tau prevents age-associated cognitive impairment by maintaining mitochondrial function and reducing mPTP opening through a CypD-dependent mechanism. These findings are novel and represent an important advance in the study of how tau contributes to the cognitive and mitochondrial failure present during aging and AD in the brain.

19.
Front Cell Dev Biol ; 8: 734, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850846

RESUMO

Wnt signaling constitutes a fundamental cellular and molecular pathway, necessary from proper embryogenesis to function-maintenance of fully developed complex organisms. In this regard, Wnt pathway plays a crucial role in both the development of the central nervous system and in maintaining the structure and function of the neuronal circuits, and it has been suggested that its dysregulation is critical in the onset of several pathologies including cancer and neurodegenerative disorders, such as Alzheimer's disease (AD). Due to its relevance in the maintenance of the neuronal activity and its involvement in the outbreak of devastating diseases, we explored the age-related changes in the expression of Wnt key components in the cortex and hippocampus of 7 to 72-months-old Octodon degus (O. degus), a Chilean long-living endemic rodent that has been proposed and used as a natural model for AD. We found a down-regulation in the expression of different Wnt ligands (Wnt3a, Wnt7a, and Wnt5a), as well as in the Wnt co-receptor LRP6. We also observed an increase in the activity of GSK-3ß related to the down-regulation of Wnt activity, a fact that was confirmed by a decreased expression of Wnt target genes. Relevantly, an important increase was found in secreted endogenous Wnt inhibitors, including the secreted-frizzled-related protein 1 and 2 (SFRP-1 and SFRP-2) and Dickkopf-1 (Dkk-1), all them antagonists at the cell surface. Furthermore, treatment with Andrographolide, a labdane diterpene obtained from Andrographis paniculata, prevents Wnt signaling loss in aging degus. Taken together, these results suggest that during the aging process Wnt signaling activity decreases in the brain of O. degus.

20.
Neuroscience ; 438: 70-85, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32416118

RESUMO

Binge drinking is a common pattern of adolescent alcohol consumption characterized by a high alcohol intake within a short period of time; which may seriously affect brain function, triggering in some cases an addictive behavior. Current evidence indicates that alcohol addictive conduct is related to the impairment of the Melanocortin System (MCS). This system participates in the regulation of food intake and promotes anti-inflammatory response in the brain. However, the cellular mechanisms involved in the protective effects induced by MCS against binge-alcohol intoxication are still unknown. Here, we studied the effects of MCS activation on mitochondrial and oxidative damage induced by a binge-like protocol in the hippocampus of adolescent rats. We used a pharmacological activator of MC4R (RO27-3225) and evaluated its effects against oxidative injury, mitochondrial failure, and bioenergetics impairment induced by binge ethanol protocol in the hippocampus of adolescent's rats. Our results indicate that MC4R agonist reduces hippocampal oxidative damage promoting antioxidant (Nrf-2) and mitochondrial biogenesis (PGC1-alpha) pathways in animals subjected to the binge-like protocol. Additionally, MC4R activation prevented mitochondrial potential loss and increased mitochondrial mass that were significantly reduced by binge ethanol protocol. Finally, RO27-3225 treatment increased ATP production and mitochondrial respiratory complex expression in adolescent rats exposed to ethanol. Altogether, these findings show that activation of the MCS pathway through MC4R prevents these negative effects of binge ethanol protocol, suggesting a possible role of the MCS in the reduction of the neurotoxic effects induced by alcohol intoxication in adolescents.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas , Etanol , Consumo de Bebidas Alcoólicas , Animais , Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Etanol/toxicidade , Hipocampo , Mitocôndrias/metabolismo , Estresse Oxidativo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA