RESUMO
Copper selenides are an important family of materials with applications in catalysis, plasmonics, photovoltaics, and thermoelectrics. Despite being a binary material system, the Cu-Se phase diagram is complex and contains multiple crystal structures in addition to several metastable structures that are not found on the thermodynamic phase diagram. Consequently, the ability to synthetically navigate this complex phase space poses a significant challenge. We demonstrate that data-driven learning can successfully map this phase space in a minimal number of experiments. We combine soft chemistry (chimie douce) synthetic methods with multivariate analyses via classification techniques to enable predictive phase determination. A surrogate model was constructed with experimental data derived from a design matrix of four experimental variables: C-Se bond strength of the selenium precursor, time, temperature, and solvent composition. The reactions in the surrogate model resulted in 11 distinct phase combinations of copper selenide. These data were used to train a classification model that predicts the phase with 95.7% accuracy. The resulting decision tree enabled conclusions to be drawn about how the experimental variables affect the phase and provided prescriptive synthetic conditions for specific phase isolation. This guided the accelerated phase targeting in a minimum number of experiments of klockmannite CuSe, which could not be isolated in any of the reactions used to construct the surrogate model. The reaction conditions that the model predicted to synthesize klockmannite CuSe were experimentally validated, highlighting the utility of this approach.
RESUMO
We present our discovery of switchable high explosives (HEs) as a new class of energetic material that cannot detonate unless filled with a fluid. The performance of fluid-filled additive-manufactured HE lattices is herein evaluated by analysis of detonation velocity and Gurney energy. The Gurney energy of the unfilled lattice was 98% lower than that of the equivalent water-filled lattice and changing the fluid mechanical properties allowed tuning of the Gurney energy and detonation velocity by 8.5% and 13.4%, respectively. These results provide, for the first time since the development of HEs, a method to completely remove the hazard of unplanned detonations during storage and transport.
RESUMO
The phyllosilicate family of clays is an intriguing collection of materials that make ideal models for studying the intercalation of alkali ions due to their layered topology and broadly tunable composition space. In this spirit, we present a hydrothermal method to prepare a layered iron phyllosilicate clay, Fe2Si4O10(OH)2, and an evaluation of its electrochemical performance for the (de)insertion of Li ions. Through careful structural refinement, we determined that this iron clay contains a 2:1 stacking sequence, which is directly analogous to the widely studied mineral montmorillonite, with the crystallites adopting a platelike morphology. Cyclic voltammetry and galvanostatic cycling reveal reversible insertion of lithium into the interstitial layers via a solid solution mechanism. Comparison of ion (de)intercalation with reports on other clay systems like muscovite, KFe2.75Si3.25O10(OH)2, which features a rigidly bound interlayer cation, demonstrates that controlling the net charge on the layers with phyllosilicate minerals is a route to enabling reversible cationic intercalation within the structure.
RESUMO
Structural polymorphism is known for many bulk materials; however, on the nanoscale metastable polymorphs tend to form more readily than in the bulk, and with more structural variety. One such metastable polymorph observed for colloidal Ag2Se nanocrystals has traditionally been referred to as the "tetragonal" phase. While there are reports on the chemistry and properties of this metastable polymorph, its crystal structure, and therefore electronic structure, has yet to be determined. We report that an anti-PbCl2-like structure type (space group P21/n) more accurately describes the powder X-ray diffraction and X-ray total scattering patterns of colloidal Ag2Se nanocrystals prepared by several different methods. Density functional theory (DFT) calculations indicate that this anti-PbCl2-like Ag2Se polymorph is a dynamically stable, narrow-band-gap semiconductor. The anti-PbCl2-like structure of Ag2Se is a low-lying metastable polymorph at 5-25 meV/atom above the ground state, depending on the exchange-correlation functional used.
RESUMO
Cu2ZnSnSe4 is a direct band gap semiconductor composed of earth-abundant elements, making it an attractive material for thin-film photovoltaic technologies. Cu2ZnSnSe4 crystallizes in the kesterite structure type as a bulk material, but it can also crystallize in a metastable wurtzite-like crystal structure when synthesized on the nanoscale. The wurtzite-like polymorph introduces unique and useful properties to Cu2ZnSnSe4 materials, including widely tunable band gaps and superior compositional flexibility as compared to kesterite Cu2ZnSnSe4. Here, we investigate the formation pathway of colloidally prepared wurtzite-like Cu2ZnSnSe4 nanocrystals. We show that this quaternary material forms through a chain of reactions, starting with binary Cu3Se2 nanocrystals that, due to both kinetic and thermodynamic reasons, preferentially react with tin to yield hexagonal copper tin selenide intermediates. These ternary intermediates then react with zinc to form the resulting wurtzite-like Cu2ZnSnSe4 nanocrystals. Based on this formation pathway, we suggest synthetic methods that may prevent the formation of unwanted impurity phases that are known to hamper the efficiency of Cu2ZnSnSe4-based optoelectronic devices.
RESUMO
Metal nitrides are strong refractory ceramic materials known for applications in the coatings, catalysis, and semiconductor industries. Lanthanide nitrides are difficult to prepare in high purity and often require high temperatures and sophisticated equipment. In this work, we present an approach to the synthesis of high-purity f-element nitrides through the use of simple lanthanide salts and the nitrogen-rich ligand 5,5'-bis(1H-tetrazolyl)amine (H2BTA) to form lanthanide complexes of 5,5'-bis(tetrazolato)amine (BTA2-). We have demonstrated that, when dehydrated, these types of complexes undergo a self-sustained combustion reaction under an inert atmosphere to yield nanostructured f-element nitride foams for lanthanum and cerium. The synthesis, characterization, and single-crystal X-ray crystallography of the BTA2- complexes of lanthanum, cerium, praseodymium, neodymium, and europium are also discussed.
RESUMO
The normally innocuous combination of aluminum and water becomes violently reactive on the nanoscale. Research in the field of the combustion of nanoparticulate aluminum has important implications in the design of molecular aluminum clusters, hydrogen storage systems, as well as energetic formulations which could use extraterrestrial water for space propulsion. However, the mechanism that controls the reaction speed is poorly understood. While current models for micron-sized aluminum water combustion reactions place heavy emphasis on diffusional limitations, as reaction scales become commensurate with diffusion lengths (approaching the nanoscale) reaction rates have long been suspected to depend on chemical kinetics, but have never been definitely measured. The combustion analysis of nanoparticulate aluminum with H2O or D2O is presented. Different reaction rates resulting from the kinetic isotope effect are observed. The current study presents the first-ever observed kinetic isotope effect in a metal combustion reaction and verifies that chemical reaction kinetics play a major role in determining the global burning rate.
RESUMO
Dielectric materials are foundational to our modern-day communications, defense, and commerce needs. Although dielectric breakdown is a primary cause of failure of these systems, we do not fully understand this process. We analyzed the dielectric breakdown channel propagation dynamics of two distinct types of electrical trees. One type of these electrical trees has not been formally classified. We observed the propagation speed of this electrical tree type to exceed 10 million meters per second. These results identify substantial gaps in the understanding of dielectric breakdown, and filling these gaps is paramount to the design and engineering of dielectric materials that are less susceptible to electrostatic discharge failure.
RESUMO
Dielectric breakdown is an example of a natural phenomenon that occurs on very short time scales, making it incredibly difficult to capture optical images of the process. Event initiation jitter is one of the primary challenges, as even a microsecond of jitter time can cause the imaging attempt to fail. Initial attempts to capture images of dielectric breakdown using a gigahertz frame rate camera and an exploding bridge wire initiation were stymied by high initiation jitter. Subsequently, a novel optical delay line apparatus was developed in order to effectively circumvent the jitter and reliably image dielectric breakdown. The design and performance of the optical delay line apparatus are presented. The optical delay line increased the image capture success rate from 25% to 94% while also permitting enhanced temporal resolution and has application in imaging other high-jitter, extremely fast phenomena.
RESUMO
We report a [3+2] cycloaddition using 3,6-bis-propargyloxy-1,2,4,5-tetrazine and azides to synthesize energetic polymers containing 1,2,4,5-tetrazine within the scaffold. This work also includes [3+2] cycloaddition to crosslink azide containing glycidyl azide polymer (GAP). These reactions provide pathways for incorporation of 1,2,4,5-tetrazine into novel energetic materials using click-chemistry and provide an alternative polymer curing approach.
RESUMO
Thiospinels, such as CoNi2S4, are showing promise for numerous applications, including as catalysts for the hydrogen evolution reaction, hydrodesulfurization, and oxygen evolution and reduction reactions; however, CoNi2S4 has not been synthesized as small, colloidal nanocrystals with high surface-area-to-volume ratios. Traditional optimization methods to control nanocrystal attributes such as size typically rely upon one variable at a time (OVAT) methods that are not only time and labor intensive but also lack the ability to identify higher-order interactions between experimental variables that affect target outcomes. Herein, we demonstrate that a statistical design of experiments (DoE) approach can optimize the synthesis of CoNi2S4 nanocrystals, allowing for control over the responses of nanocrystal size, size distribution, and isolated yield. After implementing a 25-2 fractional factorial design, the statistical screening of five different experimental variables identified temperature, Co:Ni precursor ratio, Co:thiol ratio, and their higher-order interactions as the most critical factors in influencing the aforementioned responses. Second-order design with a Doehlert matrix yielded polynomial functions used to predict the reaction parameters needed to individually optimize all three responses. A multiobjective optimization, allowing for the simultaneous optimization of size, size distribution, and isolated yield, predicted the synthetic conditions needed to achieve a minimum nanocrystal size of 6.1 nm, a minimum polydispersity (σ/dÌ ) of 10%, and a maximum isolated yield of 99%, with a desirability of 96%. The resulting model was experimentally verified by performing reactions under the specified conditions. Our work illustrates the advantage of multivariate experimental design as a powerful tool for accelerating control and optimization in nanocrystal syntheses.
RESUMO
I2-II-IV-VI4 and I-III-VI2 semiconductor nanocrystals have found applications in photovoltaics and other optoelectronic technologies because of their low toxicity and efficient light absorption into the near-infrared. Herein, we report the discovery of a metastable wurtzite-like polymorph of Cu2FeSnSe4, a member of the I2-II-IV-VI4 family of semiconductors containing only earth-abundant metals. Density functional theory calculations on this metastable polymorph of Cu2FeSnSe4 indicate that it may be a superior semiconductor for solar energy and optoelectronics applications compared to the thermodynamically preferred stannite polymorph, since the former displays a sharper dispersion of energy levels near the conduction band minimum that can enhance electron mobility and suppress hot electron cooling. The experimental optical band gap was measured by the inverse logarithmic derivative method to be direct, in agreement with theory, and in the range of 1.48-1.59 eV. Mechanistic studies reveal that this metastable phase derives from intermediate Cu3Se2 nanocrystals that serve as a structural template for the final hexagonal wurtzite-like product. We compare the chemistry of wurtzite-like Cu2FeSnSe4 to the related CuFeSe2 material system. Our experimental and computational comparisons between Cu2FeSnSe4 and CuFeSe2 help explain both the crystal chemistry of CuFeSe2 that prevents it from forming wurtzite-like polymorphs and the essential role of Sn in stabilizing the metastable structure of Cu2FeSnSe4. This work provides insight into the importance of elemental composition when designing syntheses for metastable materials.
RESUMO
While bulk gold is generally considered to be a catalytically inactive material, nanostructured forms of gold can in fact be highly catalytically active. However, few methods exist for preparing high-purity macroscopic forms of catalytically active gold. In this work, we describe the synthesis of catalytically active macroscopic nanoporous gold foams via combustion synthesis of gold bis(tetrazolato)amine complexes. The resulting metallically pure porous gold nanoarchitectures exhibit bulk densities of <0.1 g/cm3 and Brunauer-Emmett-Teller (BET) surface areas as high as 10.9 m2/g, making them among the lowest-density and highest-surface-area monolithic forms of gold produced to date. Thanks to the presence of a highly nanostructured gold surface, such gold nanofoams have also been found to be highly catalytically active toward thermal chemical vapor deposition (CVD) growth of carbon nanotubes, providing a novel method for direct synthesis of carbon nanostructures on macroscopic gold substrates. In contrast, analogous copper nanofoams were found to be catalytically inactive toward the growth of graphitic nanostructures under the same synthesis conditions, highlighting the unusually high catalytic propensity of this form factor of gold. The combustion synthesis process described herein represents a never-wet approach for directly synthesizing macroscopic catalytically active gold. Unlike sol-gel and dealloying approaches, combustion synthesis eliminates the time-consuming diffusion-mediated steps associated with previous methods and offers multiple degrees of freedom for tuning morphology, electrical conductivity, and mechanical properties.
RESUMO
Nanoporous metal foams (NMFs) have been a long sought-after class of materials in the quest for high-surface-area conductive and catalytic materials. Herein we present an overview of newly developed synthetic strategies for producing NMFs along with an in-depth discussion of combustion synthesis as a versatile and scalable approach for the preparation of nanoporous, nanostructured metal foams. Current applications of NMFs prepared using combustion synthesis are also presented including hydrogen storage and catalysis.
RESUMO
The ability to discover minute differences between samples or sample classes for gas chromatography coupled to mass spectrometry (GC-MS) can be a challenging endeavor, especially when those differences are not a priori. Fisher ratio (F-ratio) analysis is an apt technique to probe the differences between GC-MS chromatograms. F-ratio analysis is a supervised, non-targeted, discovery-based method that compares two different samples (or sample classes) to reduce the GC-MS dataset into a hit list composed of class distinguishing compounds. Three different F-ratio techniques, peak table, tile, and pixel-based were used to "discover" nine non-native analytes that were spiked into gasoline at four different nominal concentrations of 250, 85, 25, 5 parts-per-million (ppm). For the tile and pixel-based F-ratio calculations, a novel methodology is introduced to improve the sensitivity of the F-ratio calculations while reducing false positives. Furthermore, we use a combinatorial technique using null class comparisons, termed null distribution analysis, to determine a statistical F-ratio cutoff for analysis of the hit lists. The pixel-based algorithm was the most sensitive method and was able to "discover" all nine spiked analytes at a nominal concentration of 250 ppm albeit with one false positive interspersed towards the bottom of the hit list. The pixel-based software was also able to "discover" more of the spiked analytes at the lower concentrations with seven of the spiked analytes "discovered" at 85 ppm, four of the spiked analytes "discovered" at 25 ppm, and one analyte "discovered" at 5 ppm.
RESUMO
N-heterocyclic carbenes (NHCs) are an important class of ligands capable of making strong carbon-metal bonds. Recently, there has been a growing interest in the study of carbene-ligated nanocrystals, primarily coinage metal nanocrystals, which have found application as catalysts for numerous reactions. The general ability of NHC ligands to positively affect the catalytic properties of other types of nanocrystal catalysts remains unknown. Herein, we present the first carbene-stabilized Cu3-xP nanocrystals. Inquiries into the mechanism of formation of NHC-ligated Cu3-xP nanocrystals suggest that crystalline Cu3-xP forms directly as a result of a high-temperature metathesis reaction between a tris(trimethylsilyl)phosphine precursor and an NHC-CuBr precursor, the latter of which behaves as a source of both the carbene ligand and Cu+. To study the effect of the NHC surface ligands on the catalytic performance, we tested the electrocatalytic hydrogen evolving ability of the NHC-ligated Cu3-xP nanocrystals and found that they possess superior activity to analogous oleylamine-ligated Cu3-xP nanocrystals. Density functional theory calculations suggest that the NHC ligands minimize unfavorable electrostatic interactions between the copper phosphide surface and H+ during the first step of the hydrogen evolution reaction, which contributes to the superior performance of NHC-ligated Cu3-xP catalysts as compared to oleylamine-ligated Cu3-xP catalysts.
RESUMO
The microstructure of plastic bonded explosives (PBXs) is known to influence behavior during mechanical deformation, but characterizing the microstructure can be challenging. For example, the explosive crystals and binder in formulations such as PBX 9501 do not have sufficient X-ray contrast to obtain three-dimensional data by in situ, absorption contrast imaging. To address this difficulty, we have formulated a series of PBXs using octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) crystals and low-density binder systems. The binders were hydroxyl-terminated polybutadiene (HTPB) or glycidyl azide polymer (GAP) cured with a commercial blend of acrylic monomers/oligomers. The binder density is approximately half of the HMX, allowing for excellent contrast using in situ X-ray computed tomography (CT) imaging. The samples were imaged during unaxial compression using micro-scale CT in an interrupted in situ modality. The rigidity of the binder was observed to significantly influence fracture, crystal-binder delamination, and flow. Additionally, 2D slices from the segmented 3D images were meshed for finite element simulation of the mesoscale response. At low stiffness, the binder and crystal do not delaminate and the crystals move with the material flow; at high stiffness, marked delamination is noted between the crystals and the binder, leading to very different mechanical properties. Initial model results exhibit qualitatively similar delamination.