Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Purinergic Signal ; 20(1): 83-89, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37074620

RESUMO

ATP is a ubiquitous extracellular messenger released in a wide number of pathophysiological conditions. ATP is known to be present in minute amounts in the extracellular space in healthy tissues and in the blood, and to modulate a multiplicity of cell responses. Cell culture systems are widely used to explore purinergic signaling. We show here that currently used fetal bovine sera contain ATP in the 300-1300 pmol/L range. Serum ATP is associated with albumin as well as with microparticle/microvesicle fraction. Serum microparticles/microvesicles affect in vitro cell responses due to their content of miRNAs, growth factors, and other bioactive molecules. ATP is likely to be one of these bioactive factors found in a variable amount in sera of different commercial sources. ATP in serum supports ATP-dependent biochemical reactions such as the hexokinase-dependent phosphorylation of glucose to glucose 6-phosphate, and affects purinergic signaling. These findings show that cells growing in vitro in serum-supplemented media are exposed to varying levels of extracellular ATP, and thus to varying degrees of purinergic stimulation.


Assuntos
Espaço Extracelular , Soroalbumina Bovina , Células Cultivadas , Espaço Extracelular/metabolismo , Trifosfato de Adenosina/metabolismo , Glucose
2.
Molecules ; 27(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35335211

RESUMO

Adenosine triphosphate (ATP) is the key energy intermediate of cellular metabolic processes and a ubiquitous extracellular messenger. As an extracellular messenger, ATP acts at plasma membrane P2 receptors (P2Rs). The levels of extracellular ATP (eATP) are set by both passive and active release mechanisms and degradation processes. Under physiological conditions, eATP concentration is in the low nanomolar range but can rise to tens or even hundreds of micromoles/L at inflammatory sites. A dysregulated eATP homeostasis is a pathogenic factor in several chronic inflammatory diseases, including type 2 diabetes mellitus (T2DM). T2DM is characterized by peripheral insulin resistance and impairment of insulin production from pancreatic ß-cells in a landscape of systemic inflammation. Although various hypoglycemic drugs are currently available, an effective treatment for T2DM and its complications is not available. However, counteracting systemic inflammation is anticipated to be beneficial. The postulated eATP increase in T2DM is understood to be a driver of inflammation via P2X7 receptor (P2X7R) activation and the release of inflammatory cytokines. Furthermore, P2X7R stimulation is thought to trigger apoptosis of pancreatic ß-cells, thus further aggravating hyperglycemia. Targeting eATP and the P2X7R might be an appealing novel approach to T2DM therapy.


Assuntos
Diabetes Mellitus Tipo 2 , Trifosfato de Adenosina/metabolismo , Citocinas , Humanos , Inflamação/metabolismo , Transdução de Sinais
3.
Pharmacol Ther ; 262: 108700, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39111410

RESUMO

Innovation of cancer therapy has received a dramatic acceleration over the last fifteen years thanks to the introduction of the novel immune checkpoint inhibitors (ICI). On the other hand, the conspicuous scientific knowledge accumulated in purinergic signaling since the early seventies is finally being transferred to the clinic. Several Phase I/II clinical trials are currently underway to investigate the effect of drugs interfering with purinergic signaling as stand-alone or combination therapy in cancer. This is supporting the novel concept of "purinergic immune checkpoint" (PIC) in cancer therapy. In the present review we will address a) the basic pharmacology and cell biology of the purinergic system; b) principles of its pathophysiology in human diseases; c) implications for cell death, cell proliferation and cancer; d) novel molecular tools to investigate nucleotide homeostasis in the extracellular environment; e) recent developments in the pharmacology of P1, P2 receptors and related ecto-enzymes; f) P1 and P2 ligands as novel diagnostic tools; g) current issues in PIC-based anti-cancer therapy. This review will provide an appraisal of the current status of purinergic signaling in cancer and will help identify future avenues of development.


Assuntos
Neoplasias , Receptores Purinérgicos , Transdução de Sinais , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Animais , Transdução de Sinais/efeitos dos fármacos , Receptores Purinérgicos/metabolismo , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia
4.
Function (Oxf) ; 5(4)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38984997

RESUMO

Microparticles (MPs) are secreted by all cells, where they play a key role in intercellular communication, differentiation, inflammation, and cell energy transfer. P2X7 receptor (P2X7R) activation by extracellular ATP (eATP) causes a large MP release and affects their contents in a cell-specific fashion. We investigated MP release and functional impact in microglial cells from P2X7R-WT or P2X7R-KO mice, as well as mouse microglial cell lines characterized for high (N13-P2X7RHigh) or low (N13-P2X7RLow) P2X7R expression. P2X7R stimulation promoted release of a mixed MP population enriched with naked mitochondria. Released mitochondria were taken up and incorporated into the mitochondrial network of the recipient cells in a P2X7R-dependent fashion. NLRP3 and the P2X7R itself were also delivered to the recipient cells. Microparticle transfer increased the energy level of the recipient cells and conferred a pro-inflammatory phenotype. These data show that the P2X7R is a master regulator of intercellular organelle and MP trafficking in immune cells.


Assuntos
Micropartículas Derivadas de Células , Camundongos Knockout , Microglia , Mitocôndrias , Receptores Purinérgicos P2X7 , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/genética , Animais , Microglia/metabolismo , Mitocôndrias/metabolismo , Camundongos , Micropartículas Derivadas de Células/metabolismo , Trifosfato de Adenosina/metabolismo , Linhagem Celular , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética
5.
Front Cell Dev Biol ; 11: 1180774, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215083

RESUMO

Identifying the subcellular localization of a protein within a cell is often an essential step in understanding its function. The main objective of this report was to determine the presence of the P2X7 receptor (P2X7R) in healthy human cells of skeletal system, specifically osteoblasts (OBs), chondrocytes (Chs) and intervertebral disc (IVD) cells. This receptor is a member of the ATP-gated ion channel family, known to be a main sensor of extracellular ATP, the prototype of the danger signal released at sites of tissue damage, and a ubiquitous player in inflammation and cancer, including bone and cartilaginous tissues. Despite overwhelming data supporting a role in immune cell responses and tumor growth and progression, a complete picture of the pathophysiological functions of P2X7R, especially when expressed by non-immune cells, is lacking. Here we show that human wild-type P2X7R (P2X7A) was expressed in different samples of human osteoblasts, chondrocytes and intervertebral disc cells. By fluorescence microscopy (LM) and immunogold transmission electron microscopy we localized P2X7R not only in the canonical sites (plasma membrane and cytoplasm), but also in the nucleus of all the 3 cell types, especially IVD cells and OBs. P2X7R mitochondrial immunoreactivity was predominantly detected in OBs and IVD cells, but not in Chs. Evidence of subcellular localization of P2X7R may help to i. understand the participation of P2X7R in as yet unidentified signaling pathways in the joint and bone microenvironment, ii. identify pathologies associated with P2X7R mislocalization and iii. design specific targeted therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA