Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Theor Appl Genet ; 136(12): 242, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37947927

RESUMO

KEY MESSAGE: Simultaneous improvement for GY and GPC by using GWAS and GBLUP suggested a significant application in durum wheat breeding. Despite the importance of grain protein concentration (GPC) in determining wheat quality, its negative correlation with grain yield (GY) is still one of the major challenges for breeders. Here, a durum wheat panel of 200 genotypes was evaluated for GY, GPC, and their derived indices (GPD and GYD), under eight different agronomic conditions. The plant material was genotyped with the Illumina 25 k iSelect array, and a genome-wide association study was performed. Two statistical models revealed dozens of marker-trait associations (MTAs), each explaining up to 30%. phenotypic variance. Two markers on chromosomes 2A and 6B were consistently identified by both models and were found to be significantly associated with GY and GPC. MTAs identified for phenological traits co-mapped to well-known genes (i.e., Ppd-1, Vrn-1). The significance values (p-values) that measure the strength of the association of each single nucleotide polymorphism marker with the target traits were used to perform genomic prediction by using a weighted genomic best linear unbiased prediction model. The trained models were ultimately used to predict the agronomic performances of an independent durum wheat panel, confirming the utility of genomic prediction, although environmental conditions and genetic backgrounds may still be a challenge to overcome. The results generated through our study confirmed the utility of GPD and GYD to mitigate the inverse GY and GPC relationship in wheat, provided novel markers for marker-assisted selection and opened new ways to develop cultivars through genomic prediction approaches.


Assuntos
Proteínas de Grãos , Triticum , Triticum/genética , Triticum/metabolismo , Estudo de Associação Genômica Ampla , Proteínas de Grãos/metabolismo , Locos de Características Quantitativas , Melhoramento Vegetal , Grão Comestível/genética
2.
J Sci Food Agric ; 103(11): 5521-5528, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37058574

RESUMO

BACKGROUND: Pasta is a worldwide popular Italian food made exclusively of durum wheat. The choice of variety to be used to produce pasta is at the discretion of the producer based on the peculiar characteristics of each cultivar. The availability of analytical approaches for the tracking of specific varieties along the productive chain is becoming increasingly important to authenticate the pasta products and distinguish between fraudulent activities and cross-contaminations during the production process. Among the different methods, molecular approaches based on DNA markers are the most used for these purposes because of their ease of use and high reproducibility. RESULTS: In the present study, we used an easy simple sequence repeats-based method to identify the durum wheat varieties used to produce 25 samples of semolina and commercial pasta comparing their molecular profile with those of the four varieties declared by the producer and other 10 durum wheat cultivars commonly used in pasta production. All of the samples showed the expected molecular profile; however, most of them present also a foreign allele indicating a possible cross-contamination. Moreover, we evaluated the accuracy of the proposed approach through the analysis of 27 hand-made mixtures with increasing amounts of a specific contaminant variety, allowing the estimation of the limit of detection of 5% (w/w). CONCLUSION: We demonstrated the feasibility of the proposed method and its effectiveness in the detection of not declared varieties when these are present in a percentage equal to or higher than 5%. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Farinha , Triticum , Triticum/genética , Triticum/química , Reprodutibilidade dos Testes , Farinha/análise , Grão Comestível , Itália
3.
BMC Plant Biol ; 22(1): 519, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36344939

RESUMO

BACKGROUND: Rapid reductions in emissions from fossil fuel burning are needed to curb global climate change. Biofuel production from crop residues can contribute to reducing the energy crisis and environmental deterioration. Wheat is a renewable source for biofuels owing to the low cost and high availability of its residues. Thus, identifying candidate genes controlling these traits is pivotal for efficient biofuel production. Here, six multi-locus genome-wide association (ML-GWAS) models were applied using 185 tetraploid wheat accessions to detect quantitative trait nucleotides (QTNs) for fifteen traits associated with biomass composition. RESULTS: Among the 470 QTNs, only 72 identified by at least two models were considered as reliable. Among these latter, 16 also showed a significant effect on the corresponding trait (p.value < 0.05). Candidate genes survey carried out within 4 Mb flanking the QTNs, revealed putative biological functions associated with lipid transfer and metabolism, cell wall modifications, cell cycle, and photosynthesis. Four genes encoded as Cellulose Synthase (CeSa), Anaphase promoting complex (APC/C), Glucoronoxylan 4-O Methyltransferase (GXM) and HYPONASTIC LEAVES1 (HYL1) might be responsible for an increase in cellulose, and natural and acid detergent fiber (NDF and ADF) content in tetraploid wheat. In addition, the SNP marker RFL_Contig3228_2154 associated with the variation in stem solidness (Q.Scsb-3B) was validated through two molecular methods (High resolution melting; HRM and RNase H2-dependent PCR; rhAMP). CONCLUSIONS: The study provides new insights into the genetic basis of biomass composition traits on tetraploid wheat. The application of six ML-GWAS models on a panel of diverse wheat genotypes represents an efficient approach to dissect complex traits with low heritability such as wheat straw composition. The discovery of genes/genomic regions associated with biomass production and straw quality parameters is expected to accelerate the development of high-yielding wheat varieties useful for biofuel production.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Triticum/metabolismo , Biocombustíveis , Tetraploidia , Fenótipo
4.
Genomics ; 113(5): 2989-3001, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34182080

RESUMO

Studying and understanding the genetic basis of polyphenol oxidases (PPO)-related traits plays a crucial role in genetic improvement of crops. A tetraploid wheat collection (T. turgidum ssp., TWC) was analyzed using the 90K wheat SNP iSelect assay and phenotyped for PPO activity. A total of 21,347 polymorphic SNPs were used to perform genome-wide association analysis (GWA) in TWC and durum wheat sub-groups, detecting 23 and 85 marker-trait associations (MTA). In addition, candidate genes responsible for PPO activity were predicted. Based on the 23 MTAs detected in TWC, two haplotypes associated with low and high PPO activity were identified. Four SNPs were developed and validated providing one reliable marker (IWB75732) for marker assisted selection. The 23 MTAs were used to evaluate the genetic divergence (FST > 0.25) between the T. turgidum subspecies, providing new information important for understanding the domestication process of Triticum turgidum ssp. and in particular of ssp. carthlicum.


Assuntos
Catecol Oxidase , Tetraploidia , Triticum , Catecol Oxidase/genética , Domesticação , Evolução Molecular , Estudo de Associação Genômica Ampla , Haplótipos , Polimorfismo de Nucleotídeo Único , Triticum/enzimologia , Triticum/genética
6.
Int J Mol Sci ; 18(2)2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-28208645

RESUMO

Enzymatic browning is a colour reaction occurring in plants, including cereals, fruit and horticultural crops, due to oxidation during postharvest processing and storage. This has a negative impact on the colour, flavour, nutritional properties and shelf life of food products. Browning is usually caused by polyphenol oxidases (PPOs), following cell damage caused by senescence, wounding and the attack of pests and pathogens. Several studies indicated that PPOs play a role in plant immunity, and emerging evidence suggested that PPOs might also be involved in other physiological processes. Genomic investigations ultimately led to the isolation of PPO homologs in several crops, which will be possibly characterized at the functional level in the near future. Here, focusing on the botanic families of Poaceae and Solanaceae, we provide an overview on available scientific literature on PPOs, resulting in useful information on biochemical, physiological and genetic aspects.


Assuntos
Catecol Oxidase/genética , Catecol Oxidase/metabolismo , Produtos Agrícolas/enzimologia , Produtos Agrícolas/genética , Catecol Oxidase/química , Produtos Agrícolas/química , Evolução Molecular , Manipulação de Alimentos , Genômica/métodos , Reação de Maillard , Família Multigênica
7.
Front Plant Sci ; 15: 1437055, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39166249

RESUMO

This study aimed to identify and evaluate the genetic diversity of olive trees in Jordan, a country located in the eastern Mediterranean, where olive domestication originated. For this purpose, a total of 386 olive trees were analyzed, including 338 collected from two surveys (JOCC-1 and JOCC-2) across seven regions, and 48 selected accessions from the Olive Germplasm Bank of Jordan (JGBOC). These trees underwent comprehensive phenotypic and molecular characterization using different tools. Significant differences in morphological traits were detected among tested regions using the Chi-square test. Principal components analysis revealed that fruit color change and growth habit as the most discriminating traits, segregating the trees into two groups, with the first group including the Kanabisi cultivar and the second group including the Kfari Baladi cultivar. Utilizing Kompetitive Allele Specific PCR assay, two sets of informative SNPs were used for the genetic diversity analysis. Cladograms were constructed using the maximum likelihood method, revealing a consistent pattern where two clades containing identical genotypes were observed to cluster with the Kfari Baladi or Kanabisi. In addition, the SNP data was used to perform a comparative analysis with the Worldwide Olive Germplasm Bank of Córdoba, which revealed 73 unreported olive genotypes from Jordan. Genetic structure analyses using Discriminant Analysis of Principal Components (DAPC) identified four clusters with distinctive patterns of relatedness among 149 unique accessions, including 52 olive accessions from various Mediterranean countries (IOCC-3). ADMIXTURE analysis revealed four genetic clusters, consistent with the clustering observed in DAPC and cladogram analysis, indicating a high level of genetic admixture among Jordanian olive germplasm. In conclusion, the results show that olive trees in Jordan are highly diverse, providing valuable information for future conservation and management plans.

8.
Plants (Basel) ; 12(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37447132

RESUMO

In recent years, many efforts have been conducted to dissect the genetic basis of yield and yield components in durum wheat thanks to linkage mapping and genome-wide association studies. In this review, starting from the analysis of the genetic bases that regulate the expression of yield for developing new durum wheat varieties, we have highlighted how, currently, the reductionist approach, i.e., dissecting the yield into its individual components, does not seem capable of ensuring significant yield increases due to diminishing resources, land loss, and ongoing climate change. However, despite the identification of genes and/or chromosomal regions, controlling the grain yield in durum wheat is still a challenge, mainly due to the polyploidy level of this species. In the review, we underline that the next-generation sequencing (NGS) technologies coupled with improved wheat genome assembly and high-throughput genotyping platforms, as well as genome editing technology, will revolutionize plant breeding by providing a great opportunity to capture genetic variation that can be used in breeding programs. To date, genomic selection provides a valuable tool for modeling optimal allelic combinations across the whole genome that maximize the phenotypic potential of an individual under a given environment.

9.
Front Plant Sci ; 14: 1101271, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778704

RESUMO

Addressing the challenges of climate change and durum wheat production is becoming an important driver for food and nutrition security in the Mediterranean area, where are located the major producing countries (Italy, Spain, France, Greece, Morocco, Algeria, Tunisia, Turkey, and Syria). One of the emergent strategies, to cope with durum wheat adaptation, is the exploration and exploitation of the existing genetic variability in landrace populations. In this context, this review aims to highlight the important role of durum wheat landraces as a useful genetic resource to improve the sustainability of Mediterranean agroecosystems, with a focus on adaptation to environmental stresses. We described the most recent molecular techniques and statistical approaches suitable for the identification of beneficial genes/alleles related to the most important traits in landraces and the development of molecular markers for marker-assisted selection. Finally, we outline the state of the art about landraces genetic diversity and signature of selection, already identified from these accessions, for adaptability to the environment.

10.
Front Plant Sci ; 14: 1206560, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37701808

RESUMO

Durum wheat is a worldwide staple crop cultivated mainly in the Mediterranean basin. Progress in durum wheat breeding requires the exploitation of genetic variation among the gene pool enclosed in landraces, old cultivars and modern cultivars. The aim of this study was to provide a more comprehensive view of the genetic architecture evolution among 123 durum wheat accessions (41 landraces, 41 old cultivars and 41 modern cultivars), grown in replicated randomized complete block in two areas, Metaponto (Basilicata) and Foggia (Apulia), using the Illumina iSelect 15K wheat SNP array and 33 plant and kernel traits including the International Union for the Protection of new Varieties of Plants (UPOV) descriptors. Through DAPC and Bayesian population structure five groups were identified according to type of material data and reflecting the genetic basis and breeding strategies involved in their development. Phenotypic and genotypic coefficient of variation were low for kernel width (6.43%) and for grain protein content (1.03%). Highly significant differences between environments, genotypes and GEI (Genotype x Environment Interaction) were detected by mixed ANOVAs for agro-morphological-quality traits. Number of kernels per spike (h2 = 0.02) and grain protein content (h2 = 0.03) were not a heritability character and highly influenced by the environment. Nested ANOVAs revealed highly significant differences between DAPC clusters within environments for all traits except kernel roundness. Ten UPOV traits showed significant diversity for their frequencies in the two environments. By PCAmix multivariate analysis, plant height, heading time, spike length, weight of kernels per spike, thousand kernel weight, and the seed related traits had heavy weight on the differentiation of the groups, while UPOV traits discriminated moderately or to a little extent. The data collected in this study provide useful resources to facilitate management and use of wheat genetic diversity that has been lost due to selection in the last decades.

11.
Front Plant Sci ; 14: 1201287, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771498

RESUMO

Sexual reproduction has contributed to a significant degree of variability in cultivated grapevine populations. However, the additional influence of spontaneous somatic mutations has played a pivotal role in shaping the diverse landscape of grapevine agrobiodiversity. These naturally occurring selections, termed 'clones,' represent a vast reservoir of potentially valuable traits and alleles that hold promise for enhancing grape quality and bolstering plant resilience against environmental and biotic challenges. Despite their potential, many of these clones remain largely untapped.In light of this context, this study aims to delve into the population structure, genetic diversity, and distinctive genetic loci within a collection of 138 clones derived from six Campanian and Apulian grapevine varieties, known for their desirable attributes in viticulture and winemaking. Employing two reduced representation sequencing methods, we extracted Single-Nucleotide Polymorphism (SNP) markers. Population structure analysis and fixation index (FST) calculations were conducted both between populations and at individual loci. Notably, varieties originating from the same geographical region exhibited pronounced genetic similarity.The resulting SNP dataset facilitated the identification of approximately two hundred loci featuring divergent markers (FST ≥ 0.80) within annotated exons. Several of these loci exhibited associations with essential traits like phenotypic adaptability and environmental responsiveness, offering compelling opportunities for grapevine breeding initiatives. By shedding light on the genetic variability inherent in these treasured traditional grapevines, our study contributes to the broader understanding of their potential. Importantly, it underscores the urgency of preserving and characterizing these valuable genetic resources to safeguard their intra-varietal diversity and foster future advancements in grapevine cultivation.

12.
Plants (Basel) ; 11(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35807711

RESUMO

The olive tree, an iconic symbol of the Mediterranean basin, is the object of growing international interest in the production of olive oil for the world food market. In Tunisia, which is the fourth-largest producer of olive oil in the world, the production of olives and olive oil is of great socio-economic importance. Cultivation is widespread from north to south, but it is carried out using traditional techniques that results in extremely irregular production levels. To maintain their competitiveness on the international market, Tunisian producers must improve the quality of the oil through breeding plans that enhance the rich genetic heritage that is still not adequately exploited. The objective of this review is to present the state of olive breeding in Tunisia, illustrating the opportunities available for a better use of the rich Tunisian genetic heritage, the challenges it must face, and the need to multiply the efforts for sustainability, even in the light of the challenges posed by climate changes.

13.
Front Plant Sci ; 13: 939609, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909756

RESUMO

The durum wheat (Triticum turgidum L. ssp. durum Desf.) landraces constitute a useful natural germplasm to increase the genetic diversity in the modern durum cultivars. The Tunisian durum germplasm constitutes 28 accessions conserved in Genebank of Tunisia, which are still unexplored. In this study, a comparative genetic analysis was performed to investigate the relationships between the Tunisian durum lines and the modern cultivars and detect divergent loci involved in breeding history. The genetic diversity analyses carried out using nine morphological descriptors and the 25K single-nucleotide polymorphism (SNP) array allowed us to distinguish two groups of Tunisian landraces and one of durum cultivars. The analysis of molecular variance and diversity indices confirmed the genetic variability among the groups. A total of 529 SNP loci were divergent between Tunisian durum landraces and modern cultivars. Candidate genes related to plant and spike architecture, including FLOWERING LOCUS T (FT-B1), zinc finger CONSTANS, and AP2/EREBPs transcription factors, were identified. In addition, divergent genes involved in grain composition and biotic stress nucleotide-binding site and leucine-reach repeats proteins and disease resistance proteins (NBS-LRR and RPM) were found, suggesting that the Tunisian durum germplasm may represent an important source of favorable alleles to be used in future durum breeding programs for developing well-adapted and resilient cultivars.

14.
Front Genet ; 13: 1058471, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36482886

RESUMO

Although wheat (Triticum aestivum L.) is the main staple crop in the world and a major source of carbohydrates and proteins, functional genomics and allele mining are still big challenges. Given the advances in next-generation sequencing (NGS) technologies, the identification of causal variants associated with a target phenotype has become feasible. For these reasons, here, by combining sequence capture and target-enrichment methods with high-throughput NGS re-sequencing, we were able to scan at exome-wide level 46 randomly selected bread wheat individuals from a recombinant inbred line population and to identify and classify a large number of single nucleotide polymorphisms (SNPs). For technical validation of results, eight randomly selected SNPs were converted into Kompetitive Allele-Specific PCR (KASP) markers. This resource was established as an accessible and reusable molecular toolkit for allele data mining. The dataset we are making available could be exploited for novel studies on bread wheat genetics and as a foundation for starting breeding programs aimed at improving different key agronomic traits.

15.
Hortic Res ; 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35043171

RESUMO

Pea (Pisum sativum L. subsp. sativum) is one of the oldest domesticated species and a widely cultivated legume. In this study, we combined next generation sequencing (NGS) data referring to two genotyping-by-sequencing (GBS) libraries, each one prepared from a different Pisum germplasm collection. The selection of single nucleotide polymorphism (SNP) loci called in both germplasm collections caused some loss of information; however, this did not prevent the obtainment of one of the largest datasets ever used to explore pea biodiversity, consisting of 652 accessions and 22 127 markers. The analysis of population structure reflected genetic variation based on geographic patterns and allowed the definition of a model for the expansion of pea cultivation from the domestication centre to other regions of the world. In genetically distinct populations, the average decay of linkage disequilibrium (LD) ranged from a few bases to hundreds of kilobases, thus indicating different evolutionary histories leading to their diversification. Genome-wide scans resulted in the identification of putative selective sweeps associated with domestication and breeding, including genes known to regulate shoot branching, cotyledon colour and resistance to lodging, and the correct mapping of two Mendelian genes. In addition to providing information of major interest for fundamental and applied research on pea, our work describes the first successful example of integration of different GBS datasets generated from ex situ collections - a process of potential interest for a variety of purposes, including conservation genetics, genome-wide association studies, and breeding.

16.
Genes (Basel) ; 12(4)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33923933

RESUMO

Traits such as plant height (PH), juvenile growth habit (GH), heading date (HD), and tiller number are important for both increasing yield potential and improving crop adaptation to climate change. In the present study, these traits were investigated by using the same bi-parental population at early (F2 and F2-derived F3 families) and late (F6 and F7, recombinant inbred lines, RILs) generations to detect quantitative trait loci (QTLs) and search for candidate genes. A total of 176 and 178 lines were genotyped by the wheat Illumina 25K Infinium SNP array. The two genetic maps spanned 2486.97 cM and 3732.84 cM in length, for the F2 and RILs, respectively. QTLs explaining the highest phenotypic variation were found on chromosomes 2B, 2D, 5A, and 7D for HD and GH, whereas those for PH were found on chromosomes 4B and 4D. Several QTL detected in the early generations (i.e., PH and tiller number) were not detected in the late generations as they were due to dominance effects. Some of the identified QTLs co-mapped to well-known adaptive genes (i.e., Ppd-1, Vrn-1, and Rht-1). Other putative candidate genes were identified for each trait, of which PINE1 and PIF4 may be considered new for GH and TTN in wheat. The use of a large F2 mapping population combined with NGS-based genotyping techniques could improve map resolution and allow closer QTL tagging.


Assuntos
Cromossomos de Plantas/genética , Técnicas de Genotipagem/métodos , Locos de Características Quantitativas , Triticum/genética , Pão , Mapeamento Cromossômico , Endogamia , Fenótipo , Melhoramento Vegetal
17.
Hortic Res ; 8(1): 15, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33423037

RESUMO

Almond [Prunus dulcis Miller (D.A. Webb)] is the main tree nut species worldwide. Here, genotyping-by-sequencing (GBS) was applied to 149 almond cultivars from the ex situ collections of the Italian Council for Agricultural Research (CREA) and the Spanish National Research Council (CSIC), leading to the detection of 93,119 single-nucleotide polymorphisms (SNPs). The study of population structure outlined four distinct genetic groups and highlighted diversification between the Mediterranean and Californian gene pools. Data on SNP diversity and runs of homozygosity (ROHs) allowed the definition of kinship, inbreeding, and linkage disequilibrium (LD) decay in almond cultivated germplasm. Four-year phenotypic observations, gathered on 98 cultivars of the CREA collection, were used to perform a genome-wide association study (GWAS) and, for the first time in a crop species, homozygosity mapping (HM), resulting in the identification of genomic associations with nut, shell, and seed weight. Both GWAS and HM suggested that loci controlling nut and seed weight are mostly independent. Overall, this study provides insights on the almond cultivation history and delivers information of major interest for almond genetics and breeding. In a broader perspective, our results encourage the use of ROHs in crop science to estimate inbreeding, choose parental combinations minimizing the risk of inbreeding depression, and identify genomic footprints of selection for specific traits.

18.
Front Genet ; 11: 217, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32373150

RESUMO

The first breeding program in the world for durum wheat was conceived in Italy in the early 1900s. Over the decades, pressure exerted by natural and artificial selection could have progressively reduced the genetic diversity of the durum wheat germplasm. In the present study, a large panel of Italian durum wheat accessions that includes landraces, old and modern cultivars was subjected to genotyping using the Illumina iSelect 15K wheat SNP array. The aim was to assess the impact that selection has in shaping Italian durum wheat genetic diversity and to exploit the patterns of genetic diversity between populations to identify molecular signatures of divergence and selection. Relatively small differences in genetic diversity have been observed among accessions, which have been selected and cultivated in Italy over the past 150 years. Indeed, directional selection combined with that operated by farmers/breeders resulted in the increase of linkage disequilibrium (LD) and in changes of the allelic frequencies in DNA regions that control important agronomic traits. Results from this study also show that major well-known genes and/or QTLs affecting plant height (RHT), earliness (VRN, PPD) and grain quality (GLU, PSY, PSD, LYC, PPO, LOX3) co-localized with outlier SNP loci. Interestingly, many of these SNPs fall in genomic regions where genes involved in nitrogen metabolism are. This finding highlights the key role these genes have played in the transition from landraces to modern cultivars. Finally, our study remarks on the need to fully exploit the genetic diversity of Italian landraces by intense pre-breeding activities aimed at introducing a new source of adaptability and resistance in the genetic background of modern cultivars, to contrast the effect of climate change. The list of divergent loci and loci under selection associated with useful agronomic traits represents an invaluable resource to detect new allelic variants for target genes and for guiding new genomic selection programs in durum wheat.

19.
Plants (Basel) ; 9(3)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32244853

RESUMO

Olive is one of the oldest cultivated species in the Mediterranean Basin, including Tunisia, where it has a wide diversity, with more than 200 cultivars, of both wild and feral forms. Many minor cultivars are still present in marginal areas of Tunisia, where they are maintained by farmers in small local groves, but they are poorly characterized and evaluated. In order to recover this neglected germplasm, surveys were conducted in different areas, and 31 genotypes were collected, molecularly characterized with 12 nuclear microsatellite (simple sequence repeat (SSR)) markers, and compared with 26 reference cultivars present in the Tunisian National Olive collection. The analysis revealed an overall high genetic diversity of this olive's germplasm, but also discovered the presence of synonymies and homonymies among the commercialized varieties. The structure analysis showed the presence of different gene pools in the analyzed germplasm. In particular, the marginal germplasm from Ras Jbal and Azmour is characterized by gene pools not present in commercial (Nurseries) varieties, pointing out the very narrow genetic base of the commercialized olive material in Tunisia, and the need to broaden it to avoid the risk of genetic erosion of this species in this country.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA