Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Cell Biol ; 26(1): 45-56, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38168769

RESUMO

To faithfully segregate chromosomes during vertebrate mitosis, kinetochore-microtubule interactions must be restricted to a single site on each chromosome. Prior work on pair-wise kinetochore protein interactions has been unable to identify the mechanisms that prevent outer kinetochore formation in regions with a low density of CENP-A nucleosomes. To investigate the impact of higher-order assembly on kinetochore formation, we generated oligomers of the inner kinetochore protein CENP-T using two distinct, genetically engineered systems in human cells. Although individual CENP-T molecules interact poorly with outer kinetochore proteins, oligomers that mimic centromeric CENP-T density trigger the robust formation of functional, cytoplasmic kinetochore-like particles. Both in cells and in vitro, each molecule of oligomerized CENP-T recruits substantially higher levels of outer kinetochore components than monomeric CENP-T molecules. Our work suggests that the density dependence of CENP-T restricts outer kinetochore recruitment to centromeres, where densely packed CENP-A recruits a high local concentration of inner kinetochore proteins.


Assuntos
Proteínas Cromossômicas não Histona , Cinetocoros , Humanos , Proteína Centromérica A/genética , Cinetocoros/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Centrômero/genética , Centrômero/metabolismo , Nucleossomos , Mitose
2.
bioRxiv ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38464265

RESUMO

Formation of macromolecular cellular structures relies on recruitment of multiple proteins, requiring the precisely controlled pairwise binding interactions. At human kinetochores, our recent work found that the high molecular density environment enables strong bonding between the Ndc80 complex and its two binding sites at the CENP-T receptor. However, the mechanistic basis for this unusual density-dependent facilitation remains unknown. Here, using quantitative single-molecule approaches, we reveal two distinct mechanisms that drive preferential recruitment of the Ndc80 complex to higher-order structures of CENP-T, as opposed to CENP-T monomers. First, the Ndc80 binding sites within the disordered tail of the CENP-T mature over time, leading to a stronger grip on the Spc24/25 heads of the Ndc80 complexes. Second, the maturation of Ndc80 binding sites is accelerated when CENP-T molecules are clustered in close proximity. The rates of the clustering-induced maturation are remarkably different for two binding sites within CENP-T, correlating with different interfaces formed by the corresponding CENP-T sequences as they wrap around the Spc24/25 heads. The differential clustering-dependent regulation of these sites is preserved in dividing human cells, suggesting a distinct regulatory entry point to control kinetochore-microtubule interactions. The tunable acceleration of slowly maturing binding sites by a high molecular-density environment may represent a fundamental physicochemical mechanism to assist the assembly of mitotic kinetochores and other macromolecular structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA