Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(10)2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35628366

RESUMO

Acute myeloid leukemia (AML) is a hematological malignancy with a high risk of relapse. This issue is associated with the development of mechanisms leading to drug resistance that are not yet fully understood. In this context, we previously showed the clinical significance of the ATP binding cassette subfamily B-member 1 (ABCB1) in AML patients, namely its association with stemness markers and an overall worth prognosis. Calcium signaling dysregulations affect numerous cellular functions and are associated with the development of the hallmarks of cancer. However, in AML, calcium-dependent signaling pathways remain poorly investigated. With this study, we show the involvement of the ORAI1 calcium channel in store-operated calcium entry (SOCE), the main calcium entry pathway in non-excitable cells, in two representative human AML cell lines (KG1 and U937) and in primary cells isolated from patients. Moreover, our data suggest that in these models, SOCE varies according to the differentiation status, ABCB1 activity level and leukemic stem cell (LSC) proportion. Finally, we present evidence that ORAI1 expression and SOCE amplitude are modulated during the establishment of an apoptosis resistance phenotype elicited by the chemotherapeutic drug Ara-C. Our results therefore suggest ORAI1/SOCE as potential markers of AML progression and drug resistance apparition.


Assuntos
Citarabina , Leucemia Mieloide Aguda , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Linhagem Celular , Citarabina/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
2.
Small ; 13(32)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28692749

RESUMO

Intracellular transport is affected by the filament network in the densely packed cytoplasm. Biophysical studies focusing on intracellular transport based on microtubule-kinesin system frequently use in vitro motility assays, which are performed either on individual microtubules or on random (or simple) microtubule networks. Assembling intricate networks with high flexibility requires the manipulation of 25 nm diameter microtubules individually, which can be achieved through the use of pick-and-place assembly. Although widely used to assemble tiny objects, pick-and-place is not a common practice for the manipulation of biological materials. Using the high-level handling capabilities of microelectromechanical systems (MEMS) technology, tweezers are designed and fabricated to pick and place single microtubule filaments. Repeated picking and placing cycles provide a multilayered and multidirectional microtubule network even for different surface topographies. On-demand assembly of microtubules forms crossings at desired angles for biophysical studies as well as complex networks that can be used as nanotransport systems.


Assuntos
Microtúbulos/metabolismo , Transporte Biológico , Citoesqueleto/metabolismo
3.
Biomed Phys Eng Express ; 9(3)2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36745905

RESUMO

Recently, the development of electronic devices to extracellularly record the simultaneous electrical activities of numerous neurons has been blooming, opening new possibilities to interface and decode neuronal activity. In this work, we tested how the use of EDOT electropolymerization to tune post-fabrication materials could optimize the cell/electrode interface of such devices. Our results showed an improved signal-to-noise ratio, better biocompatibility, and a higher number of neurons detected in comparison with gold electrodes. Then, using such enhanced recordings with 2D neuronal cultures combined with fluorescent optical imaging, we checked the extent to which the positions of the recorded neurons could be estimated solely via their extracellular signatures. Our results showed that assuming neurons behave as monopoles, positions could be estimated with a precision of approximately tens of micrometers.


Assuntos
Técnicas de Cultura de Células , Neurônios , Microeletrodos , Potenciais de Ação/fisiologia , Neurônios/fisiologia , Ouro
4.
Lab Chip ; 22(5): 908-920, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35098952

RESUMO

Analyzing cell-cell interaction is essential to investigate how immune cells function. Elegant designs have been demonstrated to study lymphocytes and their interaction partners. However, these devices have been targeting cells of similar dimensions. T lymphocytes are smaller, more deformable, and more sensitive to pressure than many cells. This work aims to fill the gap of a method for pairing cells with different dimensions. The developed method uses hydrodynamic flow focusing in the z-direction for on-site modulation of effective channel height to capture smaller cells as single cells. Due to immune cells' sensitivity to pressure, the proposed method provides a stable system without any change in flow conditions at the analysis area throughout experiments. Paired live cells have their activities analyzed with calcium imaging at the immunological synapse formed under a controlled environment. The method is demonstrated with primary human T lymphocytes, acute myeloid leukemia (AML) cell lines, and primary AML blasts.


Assuntos
Sinapses Imunológicas , Leucemia Mieloide Aguda , Comunicação Celular , Humanos , Dispositivos Lab-On-A-Chip , Linfócitos T
5.
Micromachines (Basel) ; 12(12)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34945396

RESUMO

The adaptability of microscale devices allows microtechnologies to be used for a wide range of applications. Biology and medicine are among those fields that, in recent decades, have applied microtechnologies to achieve new and improved functionality. However, despite their ability to achieve assay sensitivities that rival or exceed conventional standards, silicon-based microelectromechanical systems remain underutilised for biological and biomedical applications. Although microelectromechanical resonators and actuators do not always exhibit optimal performance in liquid due to electrical double layer formation and high damping, these issues have been solved with some innovative fabrication processes or alternative experimental approaches. This paper focuses on several examples of silicon-based resonating devices with a brief look at their fundamental sensing elements and key fabrication steps, as well as current and potential biological/biomedical applications.

6.
Biotechnol Bioeng ; 101(1): 1-8, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18646216

RESUMO

Artificial nanotransport systems inspired by intracellular transport processes have been investigated for over a decade using the motor protein kinesin and microtubules. However, only unidirectional cargo transport has been achieved for the purpose of nanotransport in a microfluidic system. Here, we demonstrate bidirectional nanotransport by integrating kinesin and dynein motor proteins. Our molecular system allows microtubule orientation of either polarity in a microfluidic channel to construct a transport track. Each motor protein acts as a nanoactuators that transports microspheres in opposite directions determined by the polarity of the oriented microtubules: kinesin-coated microspheres move toward the plus end of microtubules, whereas dynein-coated microspheres move toward the minus end. We demonstrate both unidirectional and bidirectional transport using kinesin- and dynein-coated microspheres on microtubules oriented and glutaraldehyde-immobilized in a microfluidic channel. Tracking and statistical analysis of microsphere movement demonstrate that 87-98% of microspheres move in the designated direction at a mean velocity of 0.22-0.28 microm/s for kinesin-coated microspheres and 0.34-0.39 microm/s for dynein-coated microspheres. This bidirectional nanotransport goes beyond conventional unidirectional transport to achieve more complex artificial nanotransport in vitro.


Assuntos
Dineínas/química , Cinesinas/química , Proteínas Motores Moleculares/química , Adsorção , Materiais Revestidos Biocompatíveis/química , Dineínas/ultraestrutura , Cinesinas/ultraestrutura , Teste de Materiais , Microesferas , Conformação Molecular , Proteínas Motores Moleculares/ultraestrutura , Movimento (Física) , Ligação Proteica , Eletricidade Estática
7.
Anal Bioanal Chem ; 391(8): 2735-43, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18493750

RESUMO

Massively parallel and individual DNA manipulation for analysis has been demonstrated by designing a fully self-assembled molecular system using motor proteins. DNA molecules were immobilized by trapping in a polyacrylamide gel replica, and were digested by a restriction enzyme, XhoI, for DNA analysis. One end of the lambdaDNA was modified with biotin and the other end was modified with digoxin molecules by fragment labeling and ligation methods. The digoxin-functionalized end was immobilized on a glass surface coated with anti-digoxigenin antibody. The biotinylated end was freely suspended and experienced Brownian motion in a buffer solution. The free end was attached to a biotinylated microtubule via avidin-biotin biding and the DNA was stretched by a kinesin-based gliding assay. A stretched DNA molecule was fixed between the gel and coverslip to observe the cleavage of the DNA by the enzyme, which was supplied through the gel network structure. This simple process flow from DNA manipulation to analysis offers a new method of performing molecular surgery at the single-molecule scale.


Assuntos
DNA/química , Proteínas Motores Moleculares/análise , Proteínas Motores Moleculares/química , Nanotecnologia , Anticorpos/química , Biotina/química , Digoxina/química , Cinesinas/química , Modelos Biológicos , Estresse Mecânico , Propriedades de Superfície
8.
Micromachines (Basel) ; 9(6)2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30424208

RESUMO

This study combines the high-throughput capabilities of microfluidics with the sensitive measurements of microelectromechanical systems (MEMS) technology to perform biophysical characterization of circulating cells for diagnostic purposes. The proposed device includes a built-in microchannel that is probed by two opposing tips performing compression and sensing separately. Mechanical displacement of the compressing tip (up to a maximum of 14 µm) and the sensing tip (with a quality factor of 8.9) are provided by two separate comb-drive actuators, and sensing is performed with a capacitive displacement sensor. The device is designed and developed for simultaneous electrical and mechanical measurements. As the device is capable of exchanging the liquid inside the channel, different solutions were tested consecutively. The performance of the device was evaluated by introducing varying concentrations of glucose (from 0.55 mM (0.1%) to 55.5 mM (10%)) and NaCl (from 0.1 mM to 10 mM) solutions in the microchannel and by monitoring changes in the mechanical and electrical properties. Moreover, we demonstrated biological sample handling by capturing single cancer cells. These results show three important capabilities of the proposed device: mechanical measurements, electrical measurements, and biological sample handling. Combined in one device, these features allow for high-throughput multi-parameter characterization of single cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA