Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
New Phytol ; 240(3): 1177-1188, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37606277

RESUMO

Genetic engineering of flower color provides biotechnological products such as blue carnations or roses by accumulating delphinidin-based anthocyanins not naturally existing in these plant species. Betalains are another class of pigments that in plants are only synthesized in the order Caryophyllales. Although they have been engineered in several plant species, especially red-violet betacyanins, the yellow betaxanthins have yet to be engineered in ornamental plants. We attempted to produce yellow-flowered gentians by genetic engineering of betaxanthin pigments. First, white-flowered gentian lines were produced by knocking out the dihydroflavonol 4-reductase (DFR) gene using CRISPR/Cas9-mediated genome editing. Beta vulgaris BvCYP76AD6 and Mirabilis jalapa MjDOD, driven by gentian petal-specific promoters, flavonoid 3',5'-hydroxylase (F3'5'H) and anthocyanin 5,3'-aromatic acyltransferase (AT), respectively, were transformed into the above DFR-knockout white-flowered line; the resultant gentian plants had vivid yellow flowers. Expression analysis and pigment analysis revealed petal-specific expression and accumulation of seven known betaxanthins in their petals to c. 0.06-0.08 µmol g FW-1 . Genetic engineering of vivid yellow-flowered plants can be achieved by combining genome editing and a suitable expression of betaxanthin-biosynthetic genes in ornamental plants.

2.
Plant J ; 107(6): 1711-1723, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34245606

RESUMO

Cultivated Japanese gentians traditionally produce vivid blue flowers because of the accumulation of delphinidin-based polyacylated anthocyanins. However, recent breeding programs developed several red-flowered cultivars, but the underlying mechanism for this red coloration was unknown. Thus, we characterized the pigments responsible for the red coloration in these cultivars. A high-performance liquid chromatography with photodiode array analysis revealed the presence of phenolic compounds, including flavones and xanthones, as well as the accumulation of colored cyanidin-based anthocyanins. The chemical structures of two xanthone compounds contributing to the coloration of red-flowered gentian petals were determined by mass spectrometry and nuclear magnetic resonance spectroscopy. The compounds were identified as norathyriol 6-O-glucoside (i.e., tripteroside designated as Xt1) and a previously unreported norathyriol-6-O-(6'-O-malonyl)-glucoside (designated Xt2). The copigmentation effects of these compounds on cyanidin 3-O-glucoside were detected in vitro. Additionally, an RNA sequencing analysis was performed to identify the cDNAs encoding the enzymes involved in the biosynthesis of these xanthones. Recombinant proteins encoded by the candidate genes were produced in a wheat germ cell-free protein expression system and assayed. We determined that a UDP-glucose-dependent glucosyltransferase (StrGT9) catalyzes the transfer of a glucose moiety to norathyriol, a xanthone aglycone, to produce Xt1, which is converted to Xt2 by a malonyltransferase (StrAT2). An analysis of the progeny lines suggested that the accumulation of Xt2 contributes to the vivid red coloration of gentian flowers. Our data indicate that StrGT9 and StrAT2 help mediate xanthone biosynthesis and contribute to the coloration of red-flowered gentians via copigmentation effects.


Assuntos
Flores/fisiologia , Gentiana/fisiologia , Pigmentação/genética , Proteínas de Plantas/genética , Xantonas/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Antocianinas/genética , Antocianinas/metabolismo , Cromatografia Líquida de Alta Pressão , Flores/genética , Gentiana/genética , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Estrutura Molecular , Pigmentos Biológicos/genética , Pigmentos Biológicos/metabolismo , Proteínas de Plantas/metabolismo , Análise de Sequência de RNA , Xantenos/metabolismo , Xantonas/química , Xantonas/isolamento & purificação
3.
BMC Plant Biol ; 20(1): 370, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32762648

RESUMO

BACKGROUND: The blue pigmentation of Japanese gentian flowers is due to a polyacylated anthocyanin, gentiodelphin, and all associated biosynthesis genes and several regulatory genes have been cloned and characterized. However, the final step involving the accumulation of anthocyanins in petal vacuoles remains unclear. We cloned and analyzed the glutathione S-transferases (GSTs) in Japanese gentian that are known to be involved in anthocyanin transport in other plant species. RESULTS: We cloned GST1, which is expressed in gentian flower petals. Additionally, this gene belongs to the Phi-type GST clade related to anthocyanin biosynthesis. We used the CRISPR/Cas9-mediated genome editing system to generate loss-of-function GST1 alleles. The edited alleles were confirmed by Sanger and next-generation sequencing analyses. The GST1 genome-edited lines exhibited two types of mutant flower phenotypes, severe (almost white) and mild (pale blue). The phenotypes were associated with decreased anthocyanin accumulation in flower petals. In the GST1 genome-edited lines, sugar-induced stress conditions inhibited the accumulation of anthocyanins in stems and leaves, suggestvhing that GST1 is necessary for stress-related anthocyanin accumulation in organs other than flowers. These observations clearly demonstrate that GST1 is the gene responsible for anthocyanin transport in Japanese gentian, and is necessary for the accumulation of gentiodelphin in flowers. CONCLUSIONS: In this study, an anthocyanin-related GST gene in Japanese gentian was functionally characterized. Unlike other biosynthesis genes, the functions of GST genes are difficult to examine in in vitro studies. Thus, the genome-editing strategy described herein may be useful for in vivo investigations of the roles of transport-related genes in gentian plants.


Assuntos
Antocianinas/metabolismo , Sistemas CRISPR-Cas , Gentiana/enzimologia , Gentiana/genética , Glutationa Transferase/metabolismo , Proteínas de Plantas/metabolismo , Antocianinas/química , Transporte Biológico , Sistemas CRISPR-Cas/genética , Clonagem Molecular , Flavonoides/biossíntese , Flavonoides/genética , Flores/metabolismo , Edição de Genes , Genes de Plantas , Teste de Complementação Genética , Glutationa Transferase/genética , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética
4.
BMC Plant Biol ; 18(1): 331, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518324

RESUMO

BACKGROUND: CRISPR/Cas9 technology is one of the most powerful and useful tools for genome editing in various living organisms. In higher plants, the system has been widely exploited not only for basic research, such as gene functional analysis, but also for applied research such as crop breeding. Although the CRISPR/Cas9 system has been used to induce mutations in genes involved in various plant developmental processes, few studies have been performed to modify the color of ornamental flowers. We therefore attempted to use this system to modify flower color in the model plant torenia (Torenia fournieri L.). RESULTS: We attempted to induce mutations in the torenia flavanone 3-hydroxylase (F3H) gene, which encodes a key enzyme involved in flavonoid biosynthesis. Application of the CRISPR/Cas9 system successfully generated pale blue (almost white) flowers at a high frequency (ca. 80% of regenerated lines) in transgenic torenia T0 plants. Sequence analysis of PCR amplicons by Sanger and next-generation sequencing revealed the occurrence of mutations such as base substitutions and insertions/deletions in the F3H target sequence, thus indicating that the obtained phenotype was induced by the targeted mutagenesis of the endogenous F3H gene. CONCLUSIONS: These results clearly demonstrate that flower color modification by genome editing with the CRISPR/Cas9 system is easily and efficiently achievable. Our findings further indicate that this system may be useful for future research on flower pigmentation and/or functional analyses of additional genes in torenia.


Assuntos
Sistemas CRISPR-Cas , Flores/genética , Edição de Genes/métodos , Lamiales/genética , Proteína 9 Associada à CRISPR , Cor , Flores/anatomia & histologia , Genes de Plantas/genética , Lamiales/anatomia & histologia , Plantas Geneticamente Modificadas , Análise de Sequência de DNA
5.
Breed Sci ; 68(1): 14-24, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29681744

RESUMO

Japanese gentians are the most important ornamental flowers in Iwate Prefecture and their breeding and cultivation have been actively conducted for half a century. With its cool climate and large hilly and mountainous area, more than 60% of gentian production in Japan occurs in Iwate Prefecture. Recent advances in gentian breeding and cultivation have facilitated the efficient breeding of new cultivars; disease control and improved cultivation conditions have led to the stable production of Japanese gentians. Molecular biology techniques have been developed and applied in gentian breeding, including the diagnosis of viral diseases and analysis of physiological disorders to improve gentian production. This review summarizes such recent approaches that will assist in the development of new cultivars and support cultivation. More recently, new plant breeding techniques, including several new biotechnological methods such as genome editing and viral vectors, have also been developed in gentian. We, therefore, present examples of their application to gentians and discuss their advantages in future studies of gentians.

6.
Breed Sci ; 68(4): 481-487, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30369823

RESUMO

Carnations carrying a recessive I gene show accumulation of the yellow pigment chalcononaringenin 2'-glucoside (Ch2'G) in their flowers, whereas those with a dominant I gene do accumulation the red pigment, anthocyanin. Although this metabolic alternative at the I gene could explain yellow and red flower phenotypes, it does not explain the development of orange flower phenotypes which result from the simultaneous accumulation of both Ch2'G and anthocyanin. The carnation whole genome sequencing project recently revealed that two chalcone isomerase genes are present, one that is consistent with the I gene (Dca60979) and another (Dca60978) that had not been characterized. Here, we demonstrate that Dca60979 shows a high level of gene expression and strong enzyme activity in plants with a red flower phenotype; however, functional Dca60979 transcripts are not detected in plants with an orange flower phenotype because of a dTdic1 insertion event. Dca60978 was expressed at a low level and showed a low level of enzyme activity in plants, which could catalyze a part of chalcone to naringenin to advance anthocyanin synthesis but the other part remained to be catalyzed chalcone to Ch2'G by chalcone 2'-glucosyltransferase, resulting in accumulation of anthocyanin and Ch2'G simultaneously to give orange color.

7.
Breed Sci ; 68(1): 139-143, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29681756

RESUMO

In a previous study, two genes responsible for white flower phenotypes in carnation were identified. These genes encoded enzymes involved in anthocyanin synthesis, namely, flavanone 3-hydroxylase (F3H) and dihydroflavonol 4-reductase (DFR), and showed reduced expression in the white flower phenotypes. Here, we identify another candidate gene for white phenotype in carnation flowers using an RNA-seq analysis followed by RT-PCR. This candidate gene encodes a transcriptional regulatory factor of the basic helix-loop-helix (bHLH) type. In the cultivar examined here, both F3H and DFR genes produced active enzyme proteins; however, expression of DFR and of genes for enzymes involved in the downstream anthocyanin synthetic pathway from DFR was repressed in the absence of bHLH expression. Occasionally, flowers of the white flowered cultivar used here have red speckles and stripes on the white petals. We found that expression of bHLH occurred in these red petal segments and induced expression of DFR and the following downstream enzymes. Our results indicate that a member of the bHLH superfamily is another gene involved in anthocyanin synthesis in addition to structural genes encoding enzymes.

8.
Biochem Biophys Res Commun ; 463(4): 781-6, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26056006

RESUMO

Polyamines are essential for several living processes in plants. However, regulatory mechanisms of polyamines in herbaceous perennial are almost unknown. Here, we identified homologs of two Arabidopsis polyamine-synthetic enzymes, spermidine synthase (SPDS) and spermine synthase (SPMS) denoted as GtSPDS and GtSPMS, from the gentian plant, Gentiana triflora. Our results showed that recombinant proteins of GtSPDS and GtSPMS possessed SPDS and SPMS activities, respectively. The expression levels of GtSPDS and GtSPMS increased transiently during vegetative to reproductive growth phase and overexpression of the genes hastened flowering, suggesting that these genes are involved in flowering induction in gentian plants.


Assuntos
Poliaminas Biogênicas/biossíntese , Flores/crescimento & desenvolvimento , Gentiana/fisiologia , Espermidina Sintase/metabolismo , Espermina Sintase/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Genes de Plantas , Gentiana/genética , Gentiana/metabolismo , Dados de Sequência Molecular , Plantas Geneticamente Modificadas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Espermidina Sintase/química , Espermidina Sintase/genética , Espermina Sintase/química , Espermina Sintase/genética
9.
New Phytol ; 201(3): 1009-1020, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24180488

RESUMO

Many angiosperm families develop spatially regulated anthocyanin spots on their flowers. The Asiatic hybrid lily (Lilium spp.) cv 'Latvia' develops splatter-type spots on its tepals. The splatters arise simply from the deposition of anthocyanin pigments in the tepal epidermis. To determine how splatter development was regulated, we analysed the transcription of anthocyanin biosynthesis genes, and isolated and characterized an R2R3-MYB gene specific to splatter pigmentation. All anthocyanin biosynthesis genes were expressed in splatter-containing regions of tepals, but not in other regions, indicating that splatter pigmentation is caused by the transcriptional regulation of biosynthesis genes. Previously characterized LhMYB12 regulators were not involved in splatter pigmentation, but, instead, a new allele of the LhMYB12 gene, LhMYB12-Lat, isolated in this study, contributed to splatter development. In 'Latvia' and other lily plants expressing splatters, LhMYB12-Lat was preferentially transcribed in the splatter-containing region of tepals. Progeny segregation analysis showed that LhMYB12-Lat genotype and splatter phenotype were co-segregated among the F1 population, indicating that LhMYB12-Lat determines the presence or absence of splatters. LhMYB12-Lat contributes to splatter development, but not to full-tepal pigmentation and raised spot pigmentation. As a result of its unique sequences and different transcription profiles, this new allele of LhMYB12 should be a novel R2R3-MYB specifically associating with splatter spot development.


Assuntos
Alelos , Flores/anatomia & histologia , Flores/genética , Genes de Plantas/genética , Hibridização Genética , Lilium/genética , Pigmentação , Sequência de Aminoácidos , Antocianinas/biossíntese , Vias Biossintéticas/genética , Segregação de Cromossomos , Cruzamentos Genéticos , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genótipo , Lilium/anatomia & histologia , Dados de Sequência Molecular , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Alinhamento de Sequência , Nicotiana/genética , Transcrição Gênica , Transformação Genética
10.
Front Plant Sci ; 13: 906879, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812931

RESUMO

Gentians cultivated in Japan (Gentiana triflora and Gentiana scabra and hybrids) have blue flowers, but flower colour intensity differs among cultivars. The molecular mechanism underlying the variation in flower colour intensity is unclear. Here, we produced F2 progeny derived from an F1 cross of intense- and faint-blue lines and attempted to identify the genes responsible for flower colour intensity using RNA-sequencing analyses. Comparative analysis of flower colour intensity and transcriptome data revealed differentially expressed genes (DEGs), although known flavonoid biosynthesis-related genes showed similar expression patterns. From quantitative RT-PCR (qRT-PCR) analysis, we identified two and four genes with significantly different expression levels in the intense- and faint-blue flower lines, respectively. We conducted further analyses on one of the DEGs, termed GtMIF1, which encodes a putative mini zinc-finger protein homolog, which was most differently expressed in faint-blue individuals. Functional analysis of GtMIF1 was performed by producing stable tobacco transformants. GtMIF1-overexpressing tobacco plants showed reduced flower colour intensity compared with untransformed control plants. DNA-marker analysis also confirmed that the GtMIF1 allele of the faint-blue flower line correlated well with faint flower colour in F2 progeny. These results suggest that GtMIF1 is one of the key genes involved in determining the flower colour intensity of gentian.

11.
Methods Mol Biol ; 2172: 1-13, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32557357

RESUMO

Virus-induced gene silencing (VIGS) systems are effective for rapid analysis of gene functions in plants that require a long period of growth such as Lilium. We successfully developed a VIGS system using the cucumber mosaic virus (HL strain, CMV-HL) vector to induce RNA silencing of the L. leichtlinii phytoene desaturase gene (LlPDS), where at 30 days postinoculation (dpi), photo-bleaching was observed in the upper leaves of L. leichtlinii, and at 57 dpi, white regions appeared on flower tepals that accumulate orange carotenoids. This vector spreads in bulbs, and it could induce silencing on emerged shoots in the following year. The CMV-HL vector can be easily constructed by insertion of a 30-60 nt fragment into the cloning site of the RNA3 genome. In this chapter, we describe how to use the CMV-HL vector system in the context of Lilium plants.


Assuntos
Lilium/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , RNA Interferente Pequeno/genética , Carotenoides/metabolismo , Cucumovirus/genética , Regulação da Expressão Gênica de Plantas/genética , Inativação Gênica/fisiologia , Oxirredutases/genética , Fenótipo , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase , Nicotiana/genética , Nicotiana/metabolismo
12.
Sci Rep ; 9(1): 15831, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676875

RESUMO

Genome editing by the CRISPR/Cas9 system has recently been used to produce gene knockout lines in many plant species. We applied this system to analyze Japanese gentian plants that produce blue flowers because of the accumulation of a polyacylated anthocyanin, gentiodelphin. Mutant lines in which anthocyanin modification genes were knocked out were examined to assess the contribution of each gene to the blue pigmentation of flowers. The targeted genes encoded anthocyanin 5-O-glycosyltransferase (Gt5GT), anthocyanin 3'-O-glycosyltransferase (Gt3'GT), and anthocyanin 5/3'-aromatic acyltransferase (Gt5/3'AT). The Gt5GT knockout lines accumulated delphinidin 3G, whereas the Gt3'GT knockout lines accumulated delphinidin 3G-5CafG as the major flower pigment. Knocking out Gt5/3'AT resulted in the accumulation of delphinidin 3G-5G-3'G and delphinidin 3G-5G as the primary and secondary pigments, respectively. These results indicated the existence of two pathways mediating the modification of delphinidin 3G-5G in flowers, with one involving a glycosylation by 3'GT and the other involving an acylation by 5/3'AT. The Gt5GT, Gt3'GT, and Gt5/3'AT transformants produced pale red violet, dull pink, and pale mauve flowers, respectively, unlike the vivid blue flowers of wild-type plants. Thus, the glycosylation and subsequent acylation of the 3'-hydroxy group of the B-ring in delphinidin aglycone is essential for the development of blue gentian flowers.


Assuntos
Antocianinas , Flores , Técnicas de Inativação de Genes , Genes de Plantas , Gentiana , Pigmentação/genética , Antocianinas/biossíntese , Antocianinas/genética , Flores/genética , Flores/metabolismo , Gentiana/genética , Gentiana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Front Plant Sci ; 8: 2239, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29375608

RESUMO

Floral shape in higher plants typically requires genetic regulation through MADS transcription factors. In Japan, hundreds of azalea cultivars including flower shape mutations have been selected from the diversity of endogenous species and natural hybrids since the early 17th century, the Edo era (1603-1867). The long-lasting trait, known as "Misome-sho" in Japanese, has been identified in several species and cultivar groups of evergreen azaleas (Rhododendron L.) from three hundred years ago in Japan. However, the natural mutation conferring the long-lasting trait in azalea remains unknown. Here, we showed MADS-box gene mutations in long-lasting flowers, R. kaempferi 'Nikko-misome,' R. macrosepalum 'Kocho-zoroi,' R. indicum 'Chojyu-ho,' and R. × hannoense 'Amagi-beni-chojyu.' All of the long-lasting flowers exhibited small-sized corollas with stomata during long blooming. In the long-lasting flowers, transcript of the APETALA3 (AP3)/DEFICIENS (DEF) homolog was reduced, and an LTR-retrotransposon was independently inserted into exons 1, 2, and 7 or an unknown sequence in exon 1 in gDNA of each cultivar. This insertion apparently abolished the normal mRNA sequence of the AP3/DEF homolog in long-lasting flowers. Also, long-lasting flowers were shown from F2 hybrids that had homozygous ap3/def alleles. Therefore, we concluded that the loss of function of the AP3/DEF homolog through a transposable element insertion may confer a stable long-lasting mutation in evergreen azaleas.

14.
Plant Biotechnol (Tokyo) ; 33(5): 373-381, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-31274998

RESUMO

Lilies (Lilium) are among the most important floriculture crops, and to accelerate research regarding lily genetics, the development of reverse-genetics tools is necessary. However, Agrobacterium-mediated transformation in Lilium is time-consuming, since the plants require several years to progress from acclimation to flowering. Thus, virus-induced gene silencing (VIGS) is an attractive method for assaying gene function. In the present study, we modified a lily-derived strain of Cucumber mosaic virus (CMV-HL) as a VIGS vector and evaluated its effectiveness for inducing gene silencing in Lilium leichtlinii by introducing L. leichtlinii phytoene desaturase (LlPDS) gene fragments into an intercistronic region between the 3a and 3b genes of the CMV-HL RNA3 genome. At 30 days after inoculation (dpi) with LlPDS-containing CMV-HL, photo-bleaching was observed in the upper leaves of L. leichtlinii, and at 57 dpi, we observed that the natural orange color in flower tepals had faded. Reduced LlPDS expression and the detection of small interfering LlPDS RNA indicated that the color changes were the result of LlPDS gene silencing. In addition, the leaves also exhibited a mild photo-bleaching phenotype in the following year. Therefore, our results indicate that CMV-HL spreads systemically in the leaves and flowers of Lilium during the first year of infection, as well as in new shoots during the following year, and that the vector system can be successfully applied to induce short-term endogenous gene silencing in lilies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA