Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neuropathol Exp Neurol ; 71(10): 907-20, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22964785

RESUMO

Inhibition of the myelin-associated neurite outgrowth inhibitor Nogo-A has been found to be beneficial in experimental autoimmune encephalomyelitis (EAE), but there are little data on its expression dynamics during the disease course. We analyzed Nogo-A mRNA and protein during the course of EAE in 27 C57BL/6 mice and in 8 controls. Histopathologic and molecular analyses were performed on Day 0 (naive), preclinical (Day 10), acute (Days 18-22) and chronic (Day 50) time points. In situ hybridization and real-time polymerase chain reaction analyses revealed reduced Nogo-A mRNA expression at preclinical (p < 0.0001) and acute phases (p < 0.0001), followed by upregulation during the chronic phase (p < 0.0001). Nogo-A mRNA was expressed in neurons and oligodendrocytes. By immunohistochemistry and Western blot, there was increased Nogo-A protein expression (p < 0.001) in the chronic phase. Moreover, spatial differences were observed within EAE lesions. The pattern of Nogo-A protein expression inversely correlated with axonal regeneration growth-associated protein 43-positive axons (60% of which were Nogo-A contact-free during the acute phase) and axonal injury (ß-amyloid precursor protein-positive axons). Cortical Nogo-66 receptor protein and mRNA levels increased during the chronic phase. The results indicate that Nogo-A and Nogo receptor are actively regulated in EAE lesions; this may indicate a specific time window for localized axonal regeneration in the acute phase of EAE.


Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Regulação da Expressão Gênica , Proteínas da Mielina/biossíntese , Receptores de Superfície Celular/biossíntese , Doença Aguda , Animais , Encefalomielite Autoimune Experimental/genética , Feminino , Proteínas Ligadas por GPI/biossíntese , Proteínas Ligadas por GPI/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas da Mielina/genética , Neurônios/metabolismo , Proteínas Nogo , Receptor Nogo 1 , Oligodendroglia/metabolismo , Receptores de Superfície Celular/genética , Fatores de Tempo
2.
Brain Res ; 1390: 126-41, 2011 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-21406188

RESUMO

BACKGROUND AND PURPOSE: Experimental autoimmune encephalomyelitis (EAE) is a widely used model of multiple sclerosis (MS) and both conditions have been reported to exhibit reduced endocannabinoid activity. The purpose of this study was to address the effect of exogenously administered 2-arachidonoylglycerol (2AG), an endocannabinoid receptor ligand, on acute phase and chronic disability in EAE. EXPERIMENTAL APPROACH: Acute and chronic EAE models were induced in susceptible mice and 2AG-treatment was applied for 14 days from day of disease induction. KEY RESULTS: 2AG-treatment ameliorated acute phase of disease with delay of disease onset in both EAE models and reduced disease mortality and long-term (70 days post-induction) clinical disability in chronic EAE. Reduced axonal pathology in the chronic EAE- (p<0.0001) and increased activation and ramification of microglia in the 2AG-treated acute EAE- (p<0.05) model were noticed. The latter was accompanied by a 2- to 4-fold increase of the M2-macrophages in the perivascular infiltrations (p<0.001) of the 2AG-treated animals in the acute (day 22), although not the chronic (day 70), EAE model. Expression of cannabinoid receptors 1 (CB1R) and 2 (CB2R) was increased in 2AG-treated animals of acute EAE vs. controls (p<0.05). In addition, ex vivo viability assays exhibited reduced proliferation of activated lymph node cells when extracted from 2AG-treated EAE animals, whereas a dose-dependent response of activated lymphocytes to 2AG-treatment in vitro was noticed. CONCLUSION AND IMPLICATIONS: Our data indicate for the first time that 2AG treatment may provide direct (via CBRs) and immune (via M2 macrophages) mediated neuroprotection in EAE.


Assuntos
Ácidos Araquidônicos/uso terapêutico , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/tratamento farmacológico , Glicerídeos/uso terapêutico , Doença Aguda , Animais , Doença Crônica , Encefalomielite Autoimune Experimental/patologia , Endocanabinoides , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória
3.
Exp Neurol ; 230(1): 78-89, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21440544

RESUMO

Autologous bone marrow stromal cells (BMSCs) offer significant practical advantages for potential clinical applications in multiple sclerosis (MS). Based on recent experimental data, a number of clinical trials have been designed for the intravenous (IV) and/or intrathecal (ITH) administration of BMSCs in MS patients. Delivery of BMSCs in the cerebrospinal fluid via intracerebroventricular (ICV) transplantation is a useful tool to identify mechanisms underlying the migration and function of these cells. In the current study, BMSCs were ICV administered in severe and mild EAE, as well as naive animals; neural precursor cells (NPCs) served as cellular controls. Our data indicated that ICV-transplanted BMSCs significantly ameliorated mild though not severe EAE. Moreover, BMSCs exerted significant anti-inflammatory effect on spinal cord with concomitant reduced axonopathy only in the mild EAE model. BMSCs migrated into the brain parenchyma and, depending on their cellular density, within brain parenchyma formed cellular masses characterized by focal inflammation, demyelination, axonal loss and increased collagen-fibronectin deposition. These masses were present in 64% of ICV BMASC-transplanted severe EAE animals whereas neither BMSCs transplanted in mild EAE cases nor the NPCs exhibited similar behavior. BMSCs possibly exerted their fibrogenic effect via both paracrine and autocrine manner, at least partly due to up-regulation of connective tissue growth factor (CTGF) under the trigger of TGFb1. Our findings are of substantial relevance for clinical trials in MS, particularly regarding the possibility that ICV transplanted BMSCs entering the inflamed central nervous system may exhibit - under conditions - a local pathology of yet unknown consequences.


Assuntos
Encefalomielite Autoimune Experimental/cirurgia , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Células-Tronco Mesenquimais/fisiologia , Animais , Área Sob a Curva , Encéfalo/patologia , Sobrevivência Celular/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/mortalidade , Encefalomielite Autoimune Experimental/patologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Injeções Intraventriculares/efeitos adversos , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Neurais/fisiologia , Células-Tronco Neurais/transplante , Índice de Gravidade de Doença , Medula Espinal/patologia , Fator de Crescimento Transformador beta/metabolismo , Transplante Autólogo/efeitos adversos , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA