RESUMO
Fragile X syndrome (FXS) is a neuro-developmental disorder characterized by intellectual disabilities and autism spectrum disorders (ASD). Expansion of a CGG trinucleotide repeat (>200 repeats) in the 5'UTR of the fragile X mental retardation gene, is the single most prevalent cause of cognitive disabilities. Several screening studies for FXS, among individuals with ID from different ethnic populations, have indicated that the prevalence of the syndrome varies between 0.5 and 16 %. Because the high co-morbidity with autism, we have conducted a screening study of the cohort from CHARGE, a large-scale, population-based, case control study. We have identified six subjects carrying an expanded allele, which emphasize the importance of screening for FXS in a population with intellectual disabilities and ASD.
Assuntos
Alelos , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Predisposição Genética para Doença , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Testes Genéticos , Genótipo , Humanos , Masculino , Expansão das Repetições de Trinucleotídeos , Repetições de TrinucleotídeosRESUMO
Fragile X associated disorders are caused by a premutation allele in the fragile X mental retardation 1 gene (FMR1) and are hypothesized to result from the toxic effect of elevated levels of expanded FMR1 transcripts. Increased levels of FMR1 mRNA have indeed been reported in premutation carriers; however the mechanism by which expanded alleles lead to elevated levels of FMR1 mRNA in premutation carriers is unknown. Within the CGG repeat tract AGG interruptions are found, generally 1-3 present in normal/intermediate alleles (6-54 CGG repeats) and usually 0-1 in premutation alleles (55-200 CGG repeats). They are present at specific locations, generally occurring after 9 or 10 uninterrupted CGG repeats [(CGG)(9)AGG(CGG)(9)AGG(CGG)(n)]. We evaluated both the number of AGG interruptions and the resulting length of the uninterrupted 3' CGG repeat pure tract in premutation alleles derived from two large cohorts of male and female carriers to determine whether the presence of AGG interruptions or the length of a pure stretch of CGG repeats influence the levels of FMR1 mRNA in blood. Our findings indicate that neither the number of AGG interruptions, nor their position along the CGG tract have a significant affect on mRNA levels in premutation carriers. We also, as expected based on previous findings, observed a highly significant correlation between CGG repeat number (as both total length and length of pure CGG stretch) and FMR1 mRNA expression levels, in both males and females. Importantly, we did not observe any significant difference in FMR1 mRNA levels in premutation carriers based on age.