Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Chembiochem ; 25(8): e202300862, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38369609

RESUMO

A Morita-Baylis-Hillman Adduct (MBHA) derivative bearing a triphenylamine moiety was found to react with human serum albumin (HSA) shifting its emission from the blue to the green-yellow thus leading to green fluorescent albumin (GFA) derivatives and enlarging the platform of probes for aggregation-induced fluorescent-based detection techniques. A possible interaction of MBHA derivative 7 with a lipophilic pocket within the HSA structure was suggested by docking studies. DLS experiments showed that the reaction with HSA induce a conformational change of the protein contributing to the aggregation process of GFA derivatives. The results of investigations on the biological properties suggested that GFA retained the ability of binding drug molecules such as warfarin and diazepam. Finally, cytotoxicity evaluation studies suggested that, although the MBHA derivative 7 at 0.1 µg/mL affected the percentage of cell viability in comparison to the negative control, it cannot be considered cytotoxic, whereas at all the other concentrations≥0.5 µg/mL resulted cytotoxic at different extent.


Assuntos
Albumina Sérica Humana , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas/metabolismo , Albumina Sérica Humana/química , Espectrometria de Fluorescência
2.
Chembiochem ; 23(1): e202100449, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34647400

RESUMO

The use of light-responsive proteins to control both living or synthetic cells, is at the core of the expanding fields of optogenetics and synthetic biology. It is thus apparent that a richer reaction toolbox for the preparation of such systems is of fundamental importance. Here, we provide a proof-of-principle demonstration that Morita-Baylis-Hillman adducts can be employed to perform a facile site-specific, irreversible and diastereoselective click-functionalization of a lysine residue buried into a lipophilic binding pocket and yielding an unnatural chromophore with an extended π-system. In doing so we effectively open the path to the in vitro preparation of a library of synthetic proteins structurally reminiscent of xanthopsin eubacterial photoreceptors. We argue that such a library, made of variable unnatural chromophores inserted in an easy-to-mutate and crystallize retinoic acid transporter, significantly expand the scope of the recently introduced rhodopsin mimics as both optogenetic and "lab-on-a-molecule" tools.


Assuntos
Receptores do Ácido Retinoico/metabolismo , Rodopsina/metabolismo , Química Click , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Receptores do Ácido Retinoico/química , Rodopsina/química , Estereoisomerismo
3.
Int J Mol Sci ; 23(16)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36012721

RESUMO

Heat shock protein 90 (Hsp90) is a ubiquitous molecular chaperone that stabilizes client proteins in a folded and functional state. It is composed of two identical and symmetrical subunits and each monomer consists of three domains, the N-terminal (NTD), the middle (MD), and the C-terminal domain (CTD). Since the chaperone activity requires ATP hydrolysis, molecules able to occupy the ATP-binding pocket in the NTD act as Hsp90 inhibitors, leading to client protein degradation and cell death. Therefore, human Hsp90 represents a validated target for developing new anticancer drugs. Since protozoan parasites use their Hsp90 to trigger important transitions between different stages of their life cycle, this protein also represents a profitable target in anti-parasite drug discovery. Nevertheless, the development of molecules able to selectively target the ATP-binding site of protozoan Hsp90 is challenging due to the high homology with the human Hsp90 NTD (hHsp90-NTD). In a previous work, a series of potent Hsp90 inhibitors based on a 1,4,5-trisubstituted 1,2,3-triazole scaffold was developed. The most promising inhibitor of the series, JMC31, showed potent Hsp90 binding and antiproliferative activity in NCI-H460 cells in the low-nanomolar range. In this work, we present the structural characterization of hHsp90-NTD in complex with JMC31 through X-ray crystallography. In addition, to elucidate the role of residue 112 on the ligand binding and its exploitability for the development of selective inhibitors, we investigated the crystal structures of hHsp90-NTD variants (K112R and K112A) in complex with JMC31.


Assuntos
Proteínas de Choque Térmico HSP90 , Triazóis , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Ligação Proteica , Triazóis/farmacologia
4.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36430693

RESUMO

The field of targeted protein degradation, through the control of the ubiquitin-proteasome system (UPS), is progressing considerably; to exploit this new therapeutic modality, the proteolysis targeting chimera (PROTAC) technology was born. The opportunity to use PROTACs engaging of new E3 ligases that can hijack and control the UPS system could greatly extend the applicability of degrading molecules. To this end, here we show a potential application of the ELIOT (E3 LIgase pocketOme navigaTor) platform, previously published by this group, for a scaffold-repurposing strategy to identify new ligands for a novel E3 ligase, such as TRIM33. Starting from ELIOT, a case study of the cross-relationship using GRID Molecular Interaction Field (MIF) similarities between TRIM24 and TRIM33 binding sites was selected. Based on the assumption that similar pockets could bind similar ligands and considering that TRIM24 has 12 known co-crystalised ligands, we applied a scaffold-repurposing strategy for the identification of TRIM33 ligands exploiting the scaffold of TRIM24 ligands. We performed a deeper computational analysis to identify pocket similarities and differences, followed by docking and water analysis; selected ligands were synthesised and subsequently tested against TRIM33 via HTRF binding assay, and we obtained the first-ever X-ray crystallographic complexes of TRIM33α with three of the selected compounds.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina-Proteína Ligases , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Ligantes , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo
5.
Chemistry ; 27(59): 14690-14701, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34343376

RESUMO

Ferritins are nanocage proteins that store iron ions in their central cavity as hydrated ferric oxide biominerals. In mammals, further the L (light) and H (heavy) chains constituting cytoplasmic maxi-ferritins, an additional type of ferritin has been identified, the mitochondrial ferritin (MTF). Human MTF (hMTF) is a functional homopolymeric H-like ferritin performing the ferroxidase activity in its ferroxidase site (FS), in which Fe(II) is oxidized to Fe(III) in the presence of dioxygen. To better investigate its ferroxidase properties, here we performed time-lapse X-ray crystallography analysis of hMTF, providing structural evidence of how iron ions interact with hMTF and of their binding to the FS. Transient iron binding sites, populating the pathway along the cage from the iron entry channel to the catalytic center, were also identified. Furthermore, our kinetic data at variable iron loads indicate that the catalytic iron oxidation reaction occurs via a diferric peroxo intermediate followed by the formation of ferric-oxo species, with significant differences with respect to human H-type ferritin.


Assuntos
Ceruloplasmina , Compostos Férricos , Animais , Apoferritinas/metabolismo , Sítios de Ligação , Ceruloplasmina/metabolismo , Ferritinas/metabolismo , Humanos , Ferro/metabolismo , Oxirredução
6.
J Enzyme Inhib Med Chem ; 35(1): 639-649, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32048531

RESUMO

Leishmaniasis is a neglected disease caused by the protozoa Leishmania ssp. Environmental differences found by the parasites in the vector and the host are translated into cellular stress, leading to the production of heat shock proteins (Hsp). These are molecular chaperones involved in the folding of nascent proteins as well as in the regulation of gene expression, signalling events and proteostasis. Since Leishmania spp. use Hsp90 to trigger important transitions between their different stages of the life cycle, this protein family becomes a profitable target in anti-parasite drug discovery. In this work, we implemented a multidisciplinary strategy coupling molecular modelling with in vitro assays to identify small molecules able to inhibit Hsp90 from L. braziliensis (LbHsp90). Overall, we identified some compounds able to kill the promastigote form of the L. braziliensis, and to inhibit LbHsp90 ATPase activity.


Assuntos
Antiprotozoários/farmacologia , Inibidores Enzimáticos/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Leishmania braziliensis/efeitos dos fármacos , Chaperonas Moleculares/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Antiprotozoários/síntese química , Antiprotozoários/química , Relação Dose-Resposta a Droga , Descoberta de Drogas , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Proteínas de Choque Térmico HSP90/metabolismo , Leishmania braziliensis/química , Modelos Moleculares , Chaperonas Moleculares/síntese química , Chaperonas Moleculares/química , Estrutura Molecular , Testes de Sensibilidade Parasitária , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
7.
J Enzyme Inhib Med Chem ; 34(1): 657-664, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30727786

RESUMO

14-3-3 are regulatory proteins that through protein-protein interactions (PPI) with numerous binding partners could be involved in several human diseases, including cancer, neurodegenerative disorders, and pathogens infections. Following our research interest in the development of 14-3-3 PPI inhibitors, here we exploited the privileged 4-aminoantipyrine scaffold in the design and synthesis of some derivatives endowed with antiproliferative activity against K-562 cells, and capable of binding to recombinant 14-3-3σ as evidenced by NMR spectroscopy. The binding mode was further explored by molecular modelling, while coupling confocal microscopy with intensitometric analysis showed that compound 1 was able to promote the nuclear translocation of c-Abl at low micromolar concentrations. Overall, 1 is chemically stable compared to parent 14-3-3 PPI inhibitors, and thus emerged as a confirmed hit for further development.


Assuntos
Proteínas 14-3-3/antagonistas & inibidores , Antineoplásicos/farmacologia , Benzamidas/farmacologia , Pirazóis/farmacologia , Proteínas 14-3-3/química , Proteínas 14-3-3/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Benzamidas/síntese química , Benzamidas/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Células K562 , Estrutura Molecular , Ligação Proteica/efeitos dos fármacos , Pirazóis/síntese química , Pirazóis/química , Relação Estrutura-Atividade
8.
Molecules ; 24(8)2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31027295

RESUMO

In cells, thymidylate synthases provide the only de novo source of 2'-deoxythymidine-5'-monophosphate (dTMP), required for DNA synthesis. The activity of these enzymes is pivotal for cell survival and proliferation. Two main families of thymidylate synthases have been identified in bacteria, folate-dependent thymidylate synthase (TS) and flavin-dependent TS (FDTS). TS and FDTS are highly divergent enzymes, characterized by exclusive catalytic mechanisms, involving different sets of cofactors. TS and FDTS mechanisms of action have been recently revised, providing new perspectives for the development of antibacterial drugs targeting these enzymes. Nonetheless, some catalytic details still remain elusive. For bacterial TSs, half-site reactivity is still an open debate and the recent evidences are somehow controversial. Furthermore, different behaviors have been identified among bacterial TSs, compromising the definition of common mechanisms. Moreover, the redox reaction responsible for the regeneration of reduced flavin in FDTSs is not completely clarified. This review describes the recent advances in the structural and functional characterization of bacterial TSs and FDTSs and the current understanding of their mechanisms of action. Furthermore, the recent progresses in the development of inhibitors targeting TS and FDTS in human pathogenic bacteria are summarized.


Assuntos
Metiltransferases/metabolismo , Timidilato Sintase/metabolismo , Sequência de Aminoácidos , Flavinas/metabolismo , Humanos , Dados de Sequência Molecular , Estrutura Secundária de Proteína
9.
Molecules ; 24(7)2019 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-30935102

RESUMO

Thymidylate synthase (TS) is an enzyme of paramount importance as it provides the only de novo source of deoxy-thymidine monophosphate (dTMP). dTMP, essential for DNA synthesis, is produced by the TS-catalyzed reductive methylation of 2'-deoxyuridine-5'-monophosphate (dUMP) using N5,N10-methylenetetrahydrofolate (mTHF) as a cofactor. TS is ubiquitous and a validated drug target. TS enzymes from different organisms differ in sequence and structure, but are all obligate homodimers. The structural and mechanistic differences between the human and bacterial enzymes are exploitable to obtain selective inhibitors of bacterial TSs that can enrich the currently available therapeutic tools against bacterial infections. Enterococcus faecalis is a pathogen fully dependent on TS for dTMP synthesis. In this study, we present four new crystal structures of Enterococcus faecalis and human TSs in complex with either the substrate dUMP or the inhibitor FdUMP. The results provide new clues about the half-site reactivity of Enterococcus faecalis TS and the mechanisms underlying the conformational changes occurring in the two enzymes. We also identify relevant differences in cofactor and inhibitor binding between Enterococcus faecalis and human TS that can guide the design of selective inhibitors against bacterial TSs.


Assuntos
Enterococcus faecalis/enzimologia , Fluordesoxiuridilato/química , Conformação Proteica , Timidina Monofosfato/química , Timidilato Sintase/química , Sítios de Ligação , Domínio Catalítico , Fluordesoxiuridilato/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Relação Estrutura-Atividade , Especificidade por Substrato , Timidina Monofosfato/metabolismo , Timidilato Sintase/metabolismo
10.
Eur J Med Chem ; 264: 115946, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38043491

RESUMO

Pteridine reductase 1 (PTR1) is a catalytic protein belonging to the folate metabolic pathway in Trypanosmatidic parasites. PTR1 is a known target for the medicinal chemistry development of antiparasitic agents against Trypanosomiasis and Leishmaniasis. In previous studies, new nitro derivatives were elaborated as PTR1 inhibitors. The compounds showing a diamino-pyrimidine core structure were previously developed but they showed limited efficacy. Therefore, a new class of phenyl-, heteroaryl- and benzyloxy-nitro derivatives based on the 2-nitroethyl-2,4,6-triaminopyrimidine scaffold were designed and tested. The compounds were assayed for their ability to inhibit T. brucei and L. major PTR1 enzymes and for their antiparasitic activity towards T. brucei and L. infantum parasites. To understand the structure-activity relationships of the compounds against TbPTR1, the X-ray crystallographic structure of the 2,4,6-triaminopyrimidine (TAP) was obtained and molecular modelling studies were performed. As a next step, only the most effective compounds against T. brucei were then tested against the amastigote cellular stage of T. cruzi, searching for a broad-spectrum antiprotozoal agent. An early ADME-Tox profile evaluation was performed. The early toxicity profile of this class of compounds was investigated by measuring their inhibition of hERG and five cytochrome P450 isoforms (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4), cytotoxicity towards A549 cells and mitochondrial toxicity. Pharmacokinetic studies (SNAP-PK) were performed on selected compounds using hydroxypropyl-ß-cyclodextrins (50 % w/v) to preliminarily study their plasma concentration when administered per os at a dose of 20 mg/kg. Compound 1p, showed the best pharmacodynamic and pharmacokinetic properties, can be considered a good candidate for further bioavailability and efficacy studies.


Assuntos
Antiprotozoários , Doença de Chagas , Trypanosoma brucei brucei , Trypanosoma cruzi , Humanos , Relação Estrutura-Atividade , Antiprotozoários/química , Modelos Moleculares , Antiparasitários/farmacologia , Doença de Chagas/tratamento farmacológico
11.
J Med Chem ; 66(6): 3664-3702, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36857133

RESUMO

The most advanced antiviral molecules addressing major SARS-CoV-2 targets (Main protease, Spike protein, and RNA polymerase), compared with proteins of other human pathogenic coronaviruses, may have a short-lasting clinical efficacy. Accumulating knowledge on the mechanisms underlying the target structural basis, its mutational progression, and the related biological significance to virus replication allows envisaging the development of better-targeted therapies in the context of COVID-19 epidemic and future coronavirus outbreaks. The identification of evolutionary patterns based solely on sequence information analysis for those targets can provide meaningful insights into the molecular basis of host-pathogen interactions and adaptation, leading to drug resistance phenomena. Herein, we will explore how the study of observed and predicted mutations may offer valuable suggestions for the application of the so-called "synthetic lethal" strategy to SARS-CoV-2 Main protease and Spike protein. The synergy between genetics evidence and drug discovery may prioritize the development of novel long-lasting antiviral agents.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , COVID-19/epidemiologia , Glicoproteína da Espícula de Coronavírus , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química , Descoberta de Drogas
12.
Int J Biol Macromol ; 224: 453-464, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36265539

RESUMO

Blocking the signaling activated by the plasma membrane receptor CD93 has recently been demonstrated a useful tool in antiangiogenic treatment and oncotherapy. In the proliferating endothelium, CD93 regulates cell adhesion, migration, and vascular maturation, yet it is unclear how CD93 interacts with the extracellular matrix activating signaling pathways involved in the vascular remodeling. Here for the first time we show that in endothelial cells CD93 is structured as a dimer and that this oligomeric form is physiologically instrumental for the binding of CD93 to its ligand Multimerin-2. Crystallographic X-ray analysis of recombinant CD93 reveals the crucial role played by the C-type lectin-like and sushi-like domains in arranging as an antiparallel dimer to achieve a functional binding state, providing key information for the future design of new drugs able to hamper CD93 function in neovascular pathologies.


Assuntos
Células Endoteliais , Glicoproteínas de Membrana , Células Endoteliais/metabolismo , Glicoproteínas de Membrana/metabolismo , Lectinas Tipo C/metabolismo , Dimerização
13.
Pharmaceuticals (Basel) ; 15(11)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36355513

RESUMO

Protozoan parasites are responsible for several harmful and widespread human diseases that cause high morbidity and mortality. Currently available treatments have serious limitations due to poor efficiency, strong adverse effects, and high cost. Hence, the identification of new targets and the development of specific drug therapies against parasitic diseases are urgent needs. Heat shock protein 90 (HSP90) is an ATP-dependent molecular chaperone that plays a key role in parasite survival during the various differentiation stages, spread over the vector insect and the human host, which they undergo during their life cycle. The N-terminal domain (NTD) of HSP90, containing the main determinants for ATPase activity, represents the most druggable domain for inhibitor targeting. The molecules investigated on parasite HSP90 are mainly developed from known inhibitors of the human counterpart, and they have strong limitations due to selectivity issues, accounting for the high conservation of the ATP-binding site between the parasite and human proteins. The current review highlights the recent structural progress made to support the rational design of new molecules able to effectively block the chaperone activity of parasite HSP90.

14.
ChemMedChem ; 17(7): e202100699, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35050549

RESUMO

Metallo-ß-lactamases (MBLs) are increasingly involved as a major mechanism of resistance to carbapenems in relevant opportunistic Gram-negative pathogens. Unfortunately, clinically efficient MBL inhibitors still represent an unmet medical need. We previously reported several series of compounds based on the 1,2,4-triazole-3-thione scaffold. In particular, Schiff bases formed between diversely 5-substituted-4-amino compounds and 2-carboxybenzaldehyde were broad-spectrum inhibitors of VIM-type, NDM-1 and IMP-1 MBLs. Unfortunately, these compounds were unable to restore antibiotic susceptibility of MBL-producing bacteria, probably because of poor penetration and/or susceptibility to hydrolysis. To improve their microbiological activity, we synthesized and characterized compounds where the hydrazone-like bond of the Schiff base analogues was replaced by a stable ethyl link. This small change resulted in a narrower inhibition spectrum, as all compounds were poorly or not inhibiting NDM-1 and IMP-1, but showed a significantly better activity on VIM-type enzymes, with Ki values in the µM to sub-µM range. The resolution of the crystallographic structure of VIM-2 in complex with one of the best inhibitors yielded valuable information about their binding mode. Interestingly, several compounds were shown to restore the ß-lactam susceptibility of VIM-type-producing E. coli laboratory strains and also of K. pneumoniae clinical isolates. In addition, selected compounds were found to be devoid of toxicity toward human cancer cells at high concentration, thus showing promising safety.


Assuntos
Tionas , Inibidores de beta-Lactamases , Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli , Humanos , Testes de Sensibilidade Microbiana , Tionas/farmacologia , Triazóis/química , Inibidores de beta-Lactamases/química , beta-Lactamases/metabolismo
15.
J Med Chem ; 65(24): 16392-16419, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36450011

RESUMO

Metallo-ß-lactamases (MBLs) contribute to the resistance of Gram-negative bacteria to carbapenems, last-resort antibiotics at hospital, and MBL inhibitors are urgently needed to preserve these important antibacterial drugs. Here, we describe a series of 1,2,4-triazole-3-thione-based inhibitors displaying an α-amino acid substituent, which amine was mono- or disubstituted by (hetero)aryl groups. Compounds disubstituted by certain nitrogen-containing heterocycles showed submicromolar activities against VIM-type enzymes and strong NDM-1 inhibition (Ki = 10-30 nM). Equilibrium dialysis, native mass spectrometry, isothermal calorimetry (ITC), and X-ray crystallography showed that the compounds inhibited both VIM-2 and NDM-1 at least partially by stripping the catalytic zinc ions. These inhibitors also displayed a very potent synergistic activity with meropenem (16- to 1000-fold minimum inhibitory concentration (MIC) reduction) against VIM-type- and NDM-1-producing ultraresistant clinical isolates, including Enterobacterales and Pseudomonas aeruginosa. Furthermore, selected compounds exhibited no or moderate toxicity toward HeLa cells, favorable absorption, distribution, metabolism, excretion (ADME) properties, and no or modest inhibition of several mammalian metalloenzymes.


Assuntos
Tionas , Inibidores de beta-Lactamases , Humanos , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/química , Tionas/farmacologia , Células HeLa , Antibacterianos/farmacologia , Antibacterianos/química , beta-Lactamases/metabolismo , Testes de Sensibilidade Microbiana
16.
Biomolecules ; 11(5)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925706

RESUMO

Bile acids (BAs) are hydroxylated steroids derived from cholesterol that act at the intestinal level to facilitate the absorption of several nutrients and also play a role as signaling molecules. In the liver of various vertebrates, the trafficking of BAs is mediated by bile acid-binding proteins (L-BABPs). The ability to host hydrophobic or amphipathic molecules makes BABPs suitable for the distribution of a variety of physiological and exogenous substances. Thus, BABPs have been proposed as drug carriers, and more recently, they have also been employed to develop innovative nanotechnology and biotechnology systems. Here, we report an efficient protocol for the production, purification, and crystallization of chicken liver BABP (cL-BABP). By means of target expression as His6-tag cL-BABP, we obtained a large amount of pure and homogeneous proteins through a simple purification procedure relying on affinity chromatography. The recombinant cL-BABP showed a raised propensity to crystallize, allowing us to obtain its structure at high resolution and, in turn, assess the structural conservation of the recombinant cL-BABP with respect to the liver-extracted protein. The results support the use of recombinant cL-BABP for the development of drug carriers, nanotechnologies, and innovative synthetic photoswitch systems.


Assuntos
Proteínas de Transporte/isolamento & purificação , Proteínas de Transporte/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Glicoproteínas de Membrana/isolamento & purificação , Glicoproteínas de Membrana/farmacologia , Sequência de Aminoácidos/genética , Animais , Ácidos e Sais Biliares/metabolismo , Sítios de Ligação/fisiologia , Proteínas de Transporte/metabolismo , Galinhas , Ácido Cólico/análise , Ácido Cólico/química , Ácido Cólico/metabolismo , Cristalografia por Raios X/métodos , Fígado/metabolismo , Fígado/patologia , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Ligação Proteica/fisiologia , Proteínas Recombinantes/metabolismo
17.
Life (Basel) ; 11(5)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923275

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder, affecting millions of people worldwide, a number expected to exponentially increase in the future since no effective treatments are available so far. AD is characterized by severe cognitive dysfunctions associated with neuronal loss and connection disruption, mainly occurring in specific brain areas such as the hippocampus, cerebral cortex, and amygdala, compromising memory, language, reasoning, and social behavior. Proteomics and redox proteomics are powerful techniques used to identify altered proteins and pathways in AD, providing relevant insights on cellular pathways altered in the disease and defining novel targets exploitable for drug development. Here, we review the main results achieved by both -omics techniques, focusing on the changes occurring in AD mitochondria under oxidative stress and upon copper exposure. Relevant information arises by the comparative analysis of these results, evidencing alterations of common mitochondrial proteins, metabolic cycles, and cascades. Our analysis leads to three shared mitochondrial proteins, playing key roles in metabolism, ATP generation, oxidative stress, and apoptosis. Their potential as targets for development of innovative AD treatments is thus suggested. Despite the relevant efforts, no effective drugs against AD have been reported so far; nonetheless, various compounds targeting mitochondria have been proposed and investigated, reporting promising results.

18.
Pharmaceuticals (Basel) ; 14(7)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209148

RESUMO

Trypanosoma and Leishmania parasites are the etiological agents of various threatening neglected tropical diseases (NTDs), including human African trypanosomiasis (HAT), Chagas disease, and various types of leishmaniasis. Recently, meaningful progresses in the treatment of HAT, due to Trypanosoma brucei (Tb), have been achieved by the introduction of fexinidazole and the combination therapy eflornithine-nifurtimox. Nevertheless, due to drug resistance issues and the exitance of animal reservoirs, the development of new NTD treatments is still required. For this purpose, we explored the combined targeting of two key folate enzymes, dihydrofolate reductase (DHFR) and pteridine reductase 1 (PTR1). We formerly showed that the TbDHFR inhibitor cycloguanil (CYC) also targets TbPTR1, although with reduced affinity. Here, we explored a small library of CYC analogues to understand how their substitution pattern affects the inhibition of both TbPTR1 and TbDHFR. Some novel structural features responsible for an improved, but preferential, ability of CYC analogues to target TbPTR1 were disclosed. Furthermore, we showed that the known drug pyrimethamine (PYR) effectively targets both enzymes, also unveiling its binding mode to TbPTR1. The structural comparison between PYR and CYC binding modes to TbPTR1 and TbDHFR provided key insights for the future design of dual inhibitors for HAT therapy.

19.
Cancers (Basel) ; 13(9)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923290

RESUMO

Combining drugs represent an approach to efficiently prevent and overcome drug resistance and to reduce toxicity; yet it is a highly challenging task, particularly if combinations of inhibitors of the same enzyme target are considered. To show that crystallographic and inhibition kinetic information can provide indicators of cancer cell growth inhibition by combinations of two anti-human thymidylate synthase (hTS) drugs, we obtained the X-ray crystal structure of the hTS:raltitrexed:5-fluorodeoxyuridine monophosphate (FdUMP) complex. Its analysis showed a ternary complex with both molecules strongly bound inside the enzyme catalytic cavity. The synergistic inhibition of hTS and its mechanistic rationale were consistent with the structural analysis. When administered in combination to A2780 and A2780/CP ovarian cancer cells, the two drugs inhibited ovarian cancer cell growth additively/synergistically. Together, these results support the idea that X-ray crystallography can provide structural indicators for designing combinations of hTS (or any other target)-directed drugs to accelerate preclinical research for therapeutic application.

20.
Eur J Med Chem ; 226: 113873, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34626878

RESUMO

Metallo-ß-lactamases (MBLs) are important contributors of Gram-negative bacteria resistance to ß-lactam antibiotics. MBLs are highly worrying because of their carbapenemase activity, their rapid spread in major human opportunistic pathogens while no clinically useful inhibitor is available yet. In this context, we are exploring the potential of compounds based on the 1,2,4-triazole-3-thione scaffold as an original ligand of the di-zinc active sites of MBLs, and diversely substituted at its positions 4 and 5. Here, we present a new series of compounds substituted at the 4-position by a thioether-containing alkyl chain with a carboxylic and/or an aryl group at its extremity. Several compounds showed broad-spectrum inhibition with Ki values in the µM to sub-µM range against VIM-type enzymes, NDM-1 and IMP-1. The presence of the sulfur and of the aryl group was important for the inhibitory activity and the binding mode of a few compounds in VIM-2 was revealed by X-ray crystallography. Importantly, in vitro antibacterial susceptibility assays showed that several inhibitors were able to potentiate the activity of meropenem on Klebsiella pneumoniae clinical isolates producing VIM-1 or VIM-4, with a potentiation effect of up to 16-fold. Finally, a selected compound was found to only moderately inhibit the di-zinc human glyoxalase II, and several showed no or only moderate toxicity toward several human cells, thus favourably completing a promising behaviour.


Assuntos
Sulfetos/farmacologia , Tionas/farmacologia , Triazóis/farmacologia , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Sulfetos/química , Tionas/síntese química , Tionas/química , Triazóis/síntese química , Triazóis/química , Inibidores de beta-Lactamases/síntese química , Inibidores de beta-Lactamases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA