Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Am Soc Nephrol ; 28(4): 1162-1174, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27837149

RESUMO

αKlotho (αKL) regulates mineral metabolism, and diseases associated with αKL deficiency are characterized by hyperphosphatemia and vascular calcification (VC). αKL is expressed as a membrane-bound protein (mKL) and recognized as the coreceptor for fibroblast growth factor-23 (FGF23) and a circulating soluble form (cKL) created by endoproteolytic cleavage of mKL. The functions of cKL with regard to phosphate metabolism are unclear. We tested the ability of cKL to regulate pathways and phenotypes associated with hyperphosphatemia in a mouse model of CKD-mineral bone disorder and αKL-null mice. Stable delivery of adeno-associated virus (AAV) expressing cKL to diabetic endothelial nitric oxide synthase-deficient mice or αKL-null mice reduced serum phosphate levels. Acute injection of recombinant cKL downregulated the renal sodium-phosphate cotransporter Npt2a in αKL-null mice supporting direct actions of cKL in the absence of mKL. αKL-null mice with sustained AAV-cKL expression had a 74%-78% reduction in aorta mineral content and a 72%-77% reduction in mineral volume compared with control-treated counterparts (P<0.01). Treatment of UMR-106 osteoblastic cells with cKL + FGF23 increased the phosphorylation of extracellular signal-regulated kinase 1/2 and induced Fgf23 expression. CRISPR/Cas9-mediated deletion of fibroblast growth factor receptor 1 (FGFR1) or pretreatment with inhibitors of mitogen-activated kinase kinase 1 or FGFR ablated these responses. In summary, sustained cKL treatment reduced hyperphosphatemia in a mouse model of CKD-mineral bone disorder, and it reduced hyperphosphatemia and prevented VC in mice without endogenous αKL. Furthermore, cKL stimulated Fgf23 in an FGFR1-dependent manner in bone cells. Collectively, these findings indicate that cKL has mKL-independent activity and suggest the potential for enhancing cKL activity in diseases of hyperphosphatemia with associated VC.


Assuntos
Glucuronidase/uso terapêutico , Hiperfosfatemia/tratamento farmacológico , Calcificação Vascular/tratamento farmacológico , Animais , Osso e Ossos/metabolismo , Doença Crônica , Nefropatias Diabéticas/complicações , Modelos Animais de Doenças , Feminino , Fator de Crescimento de Fibroblastos 23 , Glucuronidase/administração & dosagem , Glucuronidase/fisiologia , Hiperfosfatemia/etiologia , Proteínas Klotho , Masculino , Camundongos , Camundongos Knockout
2.
Regul Toxicol Pharmacol ; 77: 100-8, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26930635

RESUMO

During the past two decades the use and refinements of imaging modalities have markedly increased making it possible to image embryos and fetuses used in pivotal nonclinical studies submitted to regulatory agencies. Implementing these technologies into the Good Laboratory Practice environment requires rigorous testing, validation, and documentation to ensure the reproducibility of data. A workshop on current practices and regulatory requirements was held with the goal of defining minimal criteria for the proper implementation of these technologies and subsequent submission to regulatory agencies. Micro-computed tomography (micro-CT) is especially well suited for high-throughput evaluations, and is gaining popularity to evaluate fetal skeletons to assess the potential developmental toxicity of test agents. This workshop was convened to help scientists in the developmental toxicology field understand and apply micro-CT technology to nonclinical toxicology studies and facilitate the regulatory acceptance of imaging data. Presentations and workshop discussions covered: (1) principles of micro-CT fetal imaging; (2) concordance of findings with conventional skeletal evaluations; and (3) regulatory requirements for validating the system. Establishing these requirements for micro-CT examination can provide a path forward for laboratories considering implementing this technology and provide regulatory agencies with a basis to consider the acceptability of data generated via this technology.


Assuntos
Anormalidades Induzidas por Medicamentos/diagnóstico por imagem , Osso e Ossos/diagnóstico por imagem , Biologia do Desenvolvimento/métodos , Feto/diagnóstico por imagem , Testes de Toxicidade/métodos , Microtomografia por Raio-X , Animais , Osso e Ossos/anormalidades , Osso e Ossos/efeitos dos fármacos , Consenso , Biologia do Desenvolvimento/normas , Feto/anormalidades , Feto/efeitos dos fármacos , Guias como Assunto , Humanos , Variações Dependentes do Observador , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Testes de Toxicidade/normas , Microtomografia por Raio-X/normas
3.
J Appl Physiol (1985) ; 126(4): 854-862, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30605400

RESUMO

Diabetic nephropathy (DN) is a primary cause of end-stage renal disease and is becoming more prevalent because of the global rise in type 2 diabetes. A model of DN, the db/db uninephrectomized ( db/db-uni) mouse, is characterized by obesity, as well as compromised renal function. This model also manifests defects in mineral metabolism common in DN, including hyperphosphatemia, which leads to severe endocrine disease. The FGF23 coreceptor, α-Klotho, circulates as a soluble, cleaved form (cKL) and may directly influence phosphate handling. Our study sought to test the effects of cKL on mineral metabolism in db/db-uni mice. Mice were placed into either mild or moderate disease groups on the basis of the albumin-to-creatinine ratio (ACR). Body weights of db/db-uni mice were significantly greater across the study compared with lean controls regardless of disease severity. Adeno-associated cKL administration was associated with increased serum Klotho, intact, bioactive FGF23 (iFGF23), and COOH-terminal fragments of FGF23 ( P < 0.05). Blood urea nitrogen was improved after cKL administration, and cKL corrected hyperphosphatemia in the high- and low-ACR db/db-uni groups. Interestingly, 2 wk after cKL delivery, blood glucose levels were significantly reduced in db/db-uni mice with high ACR ( P < 0.05). Interestingly, several genes associated with stabilizing active iFGF23 were also increased in the osteoblastic UMR-106 cell line with cKL treatment. In summary, delivery of cKL to a model of DN normalized blood phosphate levels regardless of disease severity, supporting the concept that targeting cKL-affected pathways could provide future therapeutic avenues in DN. NEW & NOTEWORTHY In this work, systemic and continuous delivery of the "soluble" or "cleaved" form of the FGF23 coreceptor α-Klotho (cKL) via adeno-associated virus to a rodent model of diabetic nephropathy (DN), the db/db uninephrectomized mouse, normalized blood phosphate levels regardless of disease severity. This work supports the concept that targeting cKL-affected pathways could provide future therapeutic avenues for the severe mineral metabolism defects associated with DN.


Assuntos
Nefropatias Diabéticas/sangue , Glucuronidase/metabolismo , Fosfatos/sangue , Animais , Glicemia/metabolismo , Linhagem Celular Tumoral , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/metabolismo , Modelos Animais de Doenças , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/metabolismo , Hiperfosfatemia/sangue , Hiperfosfatemia/metabolismo , Proteínas Klotho , Camundongos , Osteoblastos/metabolismo , Ratos
5.
Mol Imaging Biol ; 13(3): 493-499, 2011 06.
Artigo em Inglês | MEDLINE | ID: mdl-20617390

RESUMO

PURPOSE: The purpose of this paper is to validate a rapid and cost-effective ex vivo technique, microCT-based virtual histology, as an alternative to MRI imaging for assessing the therapeutic response in genetically engineered mouse models of cancer. PROCEDURES: All animal procedures were conducted in accordance with the Guidelines for the Care and Use of Laboratory Animals and were approved by the Institutional Animal Care and Use Committee (IACUC) at the University of Texas Health Science Center at San Antonio. MRI imaging was performed on 6-week-old, bortezomib-treated genetically engineered Patched1, p53 mice that recapitulate the characteristics of human medulloblastoma. After MRI scans, the same mice were euthanized to collect brain or spine samples for virtual histology staining followed by microCT scanning. RESULTS: Nine-micrometer resolution ex vivo micro X-ray computed tomography (microCT)-based virtual histology images were qualitatively reflective of high-field live animal images obtained with magnetic resonance imaging (MRI) and histopathology. Cerebellar volumes on microCT-based virtual histology correlated closely with MRI cerebellar volumes (R = 0.998). MRI and microCT-based virtual histology both indicated a significant difference between cerebellar volumes of untreated and treated mice (p = 0.02 and p = 0.04, respectively). The ex vivo microCT method also allowed a 7,430-fold improvement in voxel resolution (voxel volume of 729 µm³ for 9-µm isometric resolution microCT vs. 5,416,800 µm³ for 400 × 111 × 122 µm resolution MRI) at a 28% cost savings ($400 vs. $555 per animal). CONCLUSION: The ex vivo, en bloc technique of microCT-based virtual histology matched MRI in reflecting histopathology. MicroCT-based virtual histology proved to be a more cost-effective technique and less labor-intensive. On the other hand, MRI provides ability to perform in vivo imaging, faster scanning and lower radiation dose by sacrificing the spatial resolution. Thus, both in vivo MRI and ex vivo microCT-based virtual histology are effective means of quantitatively evaluating therapeutic response in preclinical models of cerebellar tumors including the childhood cancer, medulloblastoma.


Assuntos
Meduloblastoma/patologia , Interface Usuário-Computador , Microtomografia por Raio-X/métodos , Animais , Ácidos Borônicos/farmacologia , Ácidos Borônicos/uso terapêutico , Bortezomib , Cerebelo/efeitos dos fármacos , Cerebelo/patologia , Imageamento por Ressonância Magnética , Meduloblastoma/tratamento farmacológico , Camundongos , Tamanho do Órgão/efeitos dos fármacos , Pirazinas/farmacologia , Pirazinas/uso terapêutico , Carga Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA