Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Gen Virol ; 100(3): 367-368, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30672729

RESUMO

Members of the family Parvoviridae are small, resilient, non-enveloped viruses with linear, single-stranded DNA genomes of 4-6 kb. Viruses in two subfamilies, the Parvovirinae and Densovirinae, are distinguished primarily by their respective ability to infect vertebrates (including humans) versus invertebrates. Being genetically limited, most parvoviruses require actively dividing host cells and are host and/or tissue specific. Some cause diseases, which range from subclinical to lethal. A few require co-infection with helper viruses from other families. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the Parvoviridae, which is available at www.ictv.global/report/parvoviridae.


Assuntos
Infecções por Parvoviridae/virologia , Parvoviridae/classificação , Filogenia , Animais , Genoma Viral , Humanos , Parvoviridae/genética , Parvoviridae/isolamento & purificação , Parvoviridae/ultraestrutura , Virologia/organização & administração
2.
J Virol ; 90(17): 8005-12, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27356895

RESUMO

UNLABELLED: APOBEC3 knockout and human APOBEC3A and -3G transgenic mice were tested for their ability to be infected by the herpesviruses herpes simplex virus 1 and murine herpesvirus 68 and the parvovirus minute virus of mice (MVM). Knockout, APOBEC3A and APOBEC3G transgenic, and wild-type mice were equally infected by the herpesviruses, while APOBEC3A but not mouse APOBEC3 conferred resistance to MVM. No viruses showed evidence of cytidine deamination by mouse or human APOBEC3s. These data suggest that in vitro studies implicating APOBEC3 proteins in virus resistance may not reflect their role in vivo IMPORTANCE: It is well established that APOBEC3 proteins in different species are a critical component of the host antiretroviral defense. Whether these proteins also function to inhibit other viruses is not clear. There have been a number of in vitro studies suggesting that different APOBEC3 proteins restrict herpesviruses and parvoviruses, among others, but whether they also work in vivo has not been demonstrated. Our studies looking at the role of mouse and human APOBEC3 proteins in transgenic and knockout mouse models of viral infection suggest that these restriction factors are not broadly antiviral and demonstrate the importance of testing their activity in vivo.


Assuntos
Desaminase APOBEC-3G/metabolismo , Citidina Desaminase/metabolismo , Infecções por Herpesviridae/imunologia , Infecções por Parvoviridae/imunologia , Proteínas/metabolismo , Animais , Modelos Animais de Doenças , Resistência à Doença , Herpesvirus Humano 1/imunologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Vírus Miúdo do Camundongo/imunologia , Rhadinovirus/imunologia
3.
J Virol ; 87(19): 10501-14, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23903839

RESUMO

The 121-nucleotide left-end telomere of Minute Virus of Mice (MVM) can be folded into a Y-shaped hairpin with short axial ears that are highly conserved within genus Parvovirus. To explore their potential role(s) during infection, we constructed infectious plasmid clones that lacked one or other ear. Although these were nonviable when transfected into A9 cells, excision of the viral genome and DNA amplification appeared normal, and viral transcripts and proteins were expressed, but progeny virion production was minimal, supporting the idea of a potential role for the ears in genome packaging. To circumvent the absence of progeny that confounded further analysis of these mutants, plasmids were transfected into 293T cells both with and without an adenovirus helper construct, generating single bursts of progeny. These virions bound to A9 cells and were internalized but failed to initiate viral transcription, protein expression, or DNA replication. No defects in mutant virion stability or function could be detected in vitro. Significantly, mutant capsid gene expression and DNA replication could be rescued by coinfection with wild-type virions carrying a replication-competent, capsid-gene-replacement vector. To pinpoint where such complementation occurred, prior transfection of plasmids expressing only MVM nonstructural proteins was explored. NS1 alone, but not NS2, rescued transcription and protein expression from both P4 and P38 promoters, whereas NS1 molecules deleted for their C-terminal transactivation domain did not. These results suggest that the mutant virions reach the nucleus, uncoat, and are converted to duplex DNA but require an intact left-end hairpin structure to form the initiating transcription complex.


Assuntos
Genoma Viral , Vírus Miúdo do Camundongo/genética , Infecções por Parvoviridae/virologia , Parvovirus/genética , Transcrição Gênica , Replicação Viral , Animais , Pareamento de Bases , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Primers do DNA/química , Primers do DNA/genética , DNA Viral/genética , Vetores Genéticos , Camundongos , Infecções por Parvoviridae/genética , Infecções por Parvoviridae/metabolismo , Transfecção , Proteínas Virais/genética , Proteínas Virais/metabolismo
4.
J Virol ; 87(6): 3605-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23302877

RESUMO

Toll-like receptor 9 (TLR9) recognizes genomes of double-stranded DNA (dsDNA) viruses in the endosome to stimulate plasmacytoid dendritic cells (pDCs). However, how and if viruses with single-stranded DNA (ssDNA) genomes are detected by pDCs remain unclear. Here we have shown that despite the ability of purified genomic DNA to stimulate TLR9 and despite the ability to enter TLR9 endosomes, ssDNA viruses of the Parvoviridae family failed to elicit an interferon (IFN) response in pDCs.


Assuntos
Células Dendríticas/imunologia , Evasão da Resposta Imune , Parvovirus/imunologia , Receptor Toll-Like 9/imunologia , Animais , Células Cultivadas , Interferons/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
5.
Arch Virol ; 159(5): 1239-47, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24212889

RESUMO

A set of proposals to rationalize and extend the taxonomy of the family Parvoviridae is currently under review by the International Committee on Taxonomy of Viruses (ICTV). Viruses in this family infect a wide range of hosts, as reflected by the longstanding division into two subfamilies: the Parvovirinae, which contains viruses that infect vertebrate hosts, and the Densovirinae, encompassing viruses that infect arthropod hosts. Using a modified definition for classification into the family that no longer demands isolation as long as the biological context is strong, but does require a near-complete DNA sequence, 134 new viruses and virus variants were identified. The proposals introduce new species and genera into both subfamilies, resolve one misclassified species, and improve taxonomic clarity by employing a series of systematic changes. These include identifying a precise level of sequence similarity required for viruses to belong to the same genus and decreasing the level of sequence similarity required for viruses to belong to the same species. These steps will facilitate recognition of the major phylogenetic branches within genera and eliminate the confusion caused by the near-identity of species and viruses. Changes to taxon nomenclature will establish numbered, non-Latinized binomial names for species, indicating genus affiliation and host range rather than recapitulating virus names. Also, affixes will be included in the names of genera to clarify subfamily affiliation and reduce the ambiguity that results from the vernacular use of "parvovirus" and "densovirus" to denote multiple taxon levels.


Assuntos
Parvoviridae/classificação , Parvoviridae/genética , Genoma Viral , Filogenia , Especificidade da Espécie
6.
J Biol Chem ; 287(53): 44784-99, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23115247

RESUMO

Human milk contains a large diversity of free glycans beyond lactose, but their functions are not well understood. To explore their functional recognition, here we describe a shotgun glycan microarray prepared from isolated human milk glycans (HMGs), and our studies on their recognition by viruses, antibodies, and glycan-binding proteins (GBPs), including lectins. The total neutral and sialylated HMGs were derivatized with a bifunctional fluorescent tag, separated by multidimensional HPLC, and archived in a tagged glycan library, which was then used to print a shotgun glycan microarray (SGM). This SGM was first interrogated with well defined GBPs and antibodies. These data demonstrated both the utility of the array and provided preliminary structural information (metadata) about this complex glycome. Anti-TRA-1 antibodies that recognize human pluripotent stem cells specifically recognized several HMGs that were then further structurally defined as novel epitopes for these antibodies. Human influenza viruses and Parvovirus Minute Viruses of Mice also specifically recognized several HMGs. For glycan sequencing, we used a novel approach termed metadata-assisted glycan sequencing (MAGS), in which we combine information from analyses of glycans by mass spectrometry with glycan interactions with defined GBPs and antibodies before and after exoglycosidase treatments on the microarray. Together, these results provide novel insights into diverse recognition functions of HMGs and show the utility of the SGM approach and MAGS as resources for defining novel glycan recognition by GBPs, antibodies, and pathogens.


Assuntos
Biomarcadores/química , Glicômica , Leite Humano/química , Polissacarídeos/química , Receptores Virais/análise , Animais , Sequência de Carboidratos , Linhagem Celular , Células-Tronco Embrionárias/metabolismo , Humanos , Camundongos , Leite Humano/metabolismo , Dados de Sequência Molecular , Polissacarídeos/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo
7.
J Virol ; 86(1): 69-80, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22013064

RESUMO

The linear single-stranded DNA genome of minute virus of mice can be ejected, in a 3'-to-5' direction, via a cation-linked uncoating reaction that leaves the 5' end of the DNA firmly complexed with its otherwise intact protein capsid. Here we compare the phenotypes of four mutants, L172T, V40A, N149A, and N170A, which perturb the base of cylinders surrounding the icosahedral 5-fold axes of the virus, and show that these structures are strongly implicated in 3'-to-5' release. Although noninfectious at 37°C, all mutants were viable at 32°C, showed a temperature-sensitive cell entry defect, and, after proteolysis of externalized VP2 N termini, were unable to protect the VP1 domain, which is essential for bilayer penetration. Mutant virus yields from multiple-round infections were low and were characterized by the accumulation of virions containing subgenomic DNAs of specific sizes. In V40A, these derived exclusively from the 5' end of the genome, indicative of 3'-to-5' uncoating, while L172T, the most impaired mutant, had long subgenomic DNAs originating from both termini, suggesting additional packaging portal defects. Compared to the wild type, genome release in vitro following cation depletion was enhanced for all mutants, while only L172T released DNA, in both directions, without cation depletion following proteolysis at 37°C. Analysis of progeny from single-round infections showed that uncoating did not occur during virion assembly, release, or extraction. However, unlike the wild type, the V40A mutant extensively uncoated during cell entry, indicating that the V40-L172 interaction restrains an uncoating trigger mechanism within the endosomal compartment.


Assuntos
Genoma Viral , Vírus Miúdo do Camundongo/fisiologia , Mutação , Infecções por Parvoviridae/veterinária , Doenças dos Roedores/virologia , Internalização do Vírus , Replicação Viral , Animais , Linhagem Celular , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , DNA Viral/química , DNA Viral/genética , Camundongos , Vírus Miúdo do Camundongo/química , Vírus Miúdo do Camundongo/genética , Conformação de Ácido Nucleico , Infecções por Parvoviridae/virologia , Montagem de Vírus
8.
J Virol ; 86(22): 12187-97, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22933276

RESUMO

Parvoviral terminal hairpins are essential for viral DNA amplification but are also implicated in multiple additional steps in the viral life cycle. The palindromes at the two ends of the minute virus of mice (MVM) genome are dissimilar and are processed by different resolution mechanisms that selectively direct encapsidation of predominantly negative-sense progeny genomes and conserve a single Flip sequence orientation at the 3' (left) end of such progeny. The sequence and predicted structure of these 3' hairpins are highly conserved within the genus Parvovirus, exemplified by the 121-nucleotide left-end sequence of MVM, which folds into a Y-shaped hairpin containing small internal palindromes that form the "ears" of the Y. To explore the potential role(s) of this hairpin in the viral life cycle, we constructed infectious clones with the ear sequences either inverted, to give the antiparallel Flop orientation, or with multiple transversions, conserving their base composition but changing their sequence. These were compared with a "bubble" mutant, designed to activate the normally silent origin in the inboard arm of the hairpin, thus potentially rendering symmetric the otherwise asymmetric junction resolution mechanism that drives maintenance of Flip. This mutant exhibited a major defect in viral duplex and single-strand DNA replication, characterized by the accumulation of covalently closed turnaround forms of the left end, and was rapidly supplanted by revertants that restored asymmetry. In contrast, both sequence and orientation changes in the hairpin ears were tolerated, suggesting that maintaining the Flip orientation of these structures is a consequence of, but not the reason for, asymmetric left-end processing.


Assuntos
Genoma Viral , Vírus Miúdo do Camundongo/genética , Parvovirus/genética , Animais , Sequência de Bases , Linhagem Celular , Replicação do DNA , DNA Viral , Cinética , Camundongos , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Plasmídeos/metabolismo , Análise de Sequência de DNA , Replicação Viral/genética
9.
J Chromatogr A ; 1708: 464371, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37725873

RESUMO

Reversed-phase liquid chromatography (RPLC) is the analytical tool of choice for monitoring process-related organic impurities and degradants in pharmaceutical materials. Its popularity is due to its general ease-of-use, high performance, and reproducibility in most cases, all of which have improved as the technique has matured over the past few decades. Nevertheless, in our work we still occasionally observe situations where RPLC methods are not as robust as we would like them to be in practice due to variations in stationary phase chemistry between manufactured batches (i.e., lot-to-lot variability), and changes in stationary phase chemistry over time. Over the last three decades several models of RPLC selectivity have been developed and used to quantify and rationalize the effects of numerous parameters (e.g., effect of bonded phase density) on separation selectivity. The Hydrophobic Subtraction Model (HSM) of RPLC selectivity has been used extensively for these purposes; currently the publicly available database of column parameters contains data for 750 columns. In this work we explored the possibility that the HSM could be used to better understand the chemical basis of observed differences in stationary phase selectivity when they occur - for example, lot-to-lot variations or changes in selectivity during column use. We focused our attention on differences and changes in the observed selectivity for a pair of cis-trans isomers of a pharmaceutical intermediate. Although this is admittedly a challenging case, we find that the observed changes in selectivity are not strongly correlated with HSM column parameters, suggesting that there is a gap in the information provided by the HSM with respect to cis-trans isomer selectivity specifically. Further work with additional probe molecules showed that larger changes in cis-trans isomer selectivity were observed for pairs of molecules with greater molecular complexity, compared to the selectivity changes observed for simpler molecules. These results do not provide definitive answers to questions about the chemical basis of changes in stationary phase chemistry that lead to observed differences in cis-trans isomer selectivity. However, the results do provide important insights about the critical importance of molecular complexity when choosing probe compounds and indicate opportunities to develop improved selectivity models with increased sensitivity for cis-trans isomer selectivity.


Assuntos
Cromatografia de Fase Reversa , Comércio , Reprodutibilidade dos Testes , Bases de Dados Factuais , Preparações Farmacêuticas
10.
J Virol ; 85(10): 4822-7, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21367911

RESUMO

The parvovirus minute virus of mice (MVM) packages a single copy of its linear single-stranded DNA genome into preformed capsids, in a process that is probably driven by a virus-encoded helicase. Parvoviruses have a roughly cylindrically shaped pore that surrounds each of the 12 5-fold vertices. The pore, which penetrates the virion shell, is created by the juxtaposition of 10 antiparallel ß-strands, two from each of the 5-fold-related capsid proteins. There is a bottleneck in the channel formed by the symmetry-related side chains of the leucines at position 172. We report here the X-ray crystal structure of the particles produced by a leucine-to-tryptophan mutation at position 172 and the analysis of its biochemical properties. The mutant capsid had its 5-fold channel blocked, and the particles were unable to package DNA, strongly suggesting that the 5-fold pore is the packaging portal for genome entry.


Assuntos
Capsídeo/metabolismo , Capsídeo/ultraestrutura , DNA Viral/metabolismo , Vírus Miúdo do Camundongo/fisiologia , Vírus Miúdo do Camundongo/ultraestrutura , Montagem de Vírus , Substituição de Aminoácidos/genética , Animais , Capsídeo/química , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/ultraestrutura , Cristalografia por Raios X , Leucina/genética , Vírus Miúdo do Camundongo/química , Vírus Miúdo do Camundongo/genética , Mutação de Sentido Incorreto , Estrutura Quaternária de Proteína , Triptofano/genética
11.
J Pharm Biomed Anal ; 207: 114395, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34628292

RESUMO

For the robust analysis of N,N-Carbonyldiimidazole (CDI), its derivatization into a more stable compound may be needed. Herein, the reaction of CDI with N-benzylmethylamine followed by LC-UV quantitative analysis was explored. Reaction conditions as well as LC method feasibility were demonstrated by qualification of selectivity from other impurities and reagents, linearity across a range of 0.05-0.15%w/w, spike and recovery across a range of 0.05-0.15%w/w, reaction reproducibility with various samples, reagents and analytical chemists, and sample stability of over 24 h. Rapid and quantitative derivatization of residual CDI was achieved at 0.1% w/w relative to the synthetic product under consideration. A fit-for-purpose limit test using a RPLC-UV method as an in-process control for the reaction completion of product, at scale, was successfully implemented and executed.


Assuntos
Imidazóis , Indicadores e Reagentes , Reprodutibilidade dos Testes
12.
J Virol ; 84(4): 1945-56, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19955311

RESUMO

We describe a structural rearrangement that can occur in parvovirus minute virus of mice (MVMp) virions following prolonged exposure to buffers containing 0.5 mM EDTA. Such particles remain stable at 4 degrees C but undergo a conformational shift upon heating to 37 degrees C at pH 7.2 that leads to the ejection of much of the viral genome in a 3'-to-5' direction, leaving the DNA tightly associated with the otherwise intact capsid. This rearrangement can be prevented by the addition of 1 mM CaCl(2) or MgCl(2) prior to incubation at 37 degrees C, suggesting that readily accessible divalent cation binding sites in the particle are critical for genome retention. Uncoating was not seen following the incubation of virions at pH 5.5 and 37 degrees C or at pH 7.2 and 37 degrees C in particles with subgenomic DNA, suggesting that pressure exerted by the full-length genome may influence this process. Uncoated genomes support complementary-strand synthesis by T7 DNA polymerase, but synthesis aborts upstream of the right-hand end, which remains capsid associated. We conclude that viral genomes are positioned so that their 3' termini and coding sequences can be released from intact particles at physiological temperatures by a limited conformational rearrangement. In the presence of divalent cations, incremental heating between 45 degrees C and 65 degrees C induces structural transitions that first lead to the extrusion of VP1 N termini, followed by genome exposure. However, in cation-depleted virions, the sequence of these shifts is blurred. Moreover, cation-depleted particles that have been induced to eject their genomes at 37 degrees C continue to sequester their VP1 N termini within the intact capsid, suggesting that these two extrusion events represent separable processes.


Assuntos
Vírus Miúdo do Camundongo/genética , Vírus Miúdo do Camundongo/fisiologia , Animais , Capsídeo/fisiologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/fisiologia , Cátions Bivalentes/metabolismo , Linhagem Celular , Quelantes , DNA Viral/biossíntese , DNA Viral/genética , Genoma Viral , Concentração de Íons de Hidrogênio , Camundongos , Vírion/genética , Vírion/fisiologia , Replicação Viral/genética , Replicação Viral/fisiologia
13.
J Pharm Biomed Anal ; 191: 113594, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32949956

RESUMO

With the intent to provide aligned, impactful, and efficient strategies for liquid chromatography method development, tier-based stationary/mobile phase screening workflows have been implemented in the Chemical Process Development department at Bristol Myers Squibb. These workflows are utilized as tools that enable more rapid method generation for early to mid-stage clinical development programs. An illustrative example of applying this approach was the method development for 3-bromo-2-chloropyridine and six of its positional isomeric impurities. Several parameters (gradient time, flow rate, column geometry, particle size, temperature, and solvent effects) were evaluated to achieve a baseline resolved separation for this challenging mixture. The impact that the screening workflows have regarding timesavings, effort, and resourcing to develop and optimize this LC method will be discussed.


Assuntos
Cromatografia Líquida , Cromatografia Líquida de Alta Pressão , Isomerismo , Solventes , Temperatura
14.
J Virol ; 82(3): 1195-203, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18045943

RESUMO

Very little is known about the role that evolutionary dynamics plays in diseases caused by mammalian DNA viruses. To address this issue in a natural host model, we compared the pathogenesis and genetics of the attenuated fibrotropic and the virulent lymphohematotropic strains of the parvovirus minute virus of mice (MVM), and of two invasive fibrotropic MVM (MVMp) variants carrying the I362S or K368R change in the VP2 major capsid protein, in the infection of severe combined immunodeficient (SCID) mice. By 14 to 18 weeks after oronasal inoculation, the I362S and K368R viruses caused lethal leukopenia characterized by tissue damage and inclusion bodies in hemopoietic organs, a pattern of disease found by 7 weeks postinfection with the lymphohematotropic MVM (MVMi) strain. The MVMp populations emerging in leukopenic mice showed consensus sequence changes in the MVMi genotype at residues G321E and A551V of VP2 in the I362S virus infections or A551V and V575A changes in the K368R virus infections, as well as a high level of genetic heterogeneity within a capsid domain at the twofold depression where these residues lay. Amino acids forming this capsid domain are important MVM tropism determinants, as exemplified by the switch in MVMi host range toward mouse fibroblasts conferred by coordinated changes of some of these residues and by the essential character of glutamate at residue 321 for maintaining MVMi tropism toward primary hemopoietic precursors. The few viruses within the spectrum of mutants from mice that maintained the respective parental 321G and 575V residues were infectious in a plaque assay, whereas the viruses with the main consensus sequences exhibited low levels of fitness in culture. Consistent with this finding, a recombinant MVMp virus carrying the consensus sequence mutations arising in the K368R virus background in mice failed to initiate infection in cell lines of different tissue origins, even though it caused rapid-course lethal leukopenia in SCID mice. The parental consensus genotype prevailed during leukopenia development, but plaque-forming viruses with the reversion of the 575A residue to valine emerged in affected organs. The disease caused by the DNA virus in mice, therefore, involves the generation of heterogeneous viral populations that may cooperatively interact for the hemopoietic syndrome. The evolutionary changes delineate a sector of the surface of the capsid that determines tropism and that surrounds the sialic acid receptor binding domain.


Assuntos
Proteínas do Capsídeo/fisiologia , Variação Genética , Vírus Miúdo do Camundongo/patogenicidade , Infecções por Parvoviridae/virologia , Substituição de Aminoácidos , Animais , Proteínas do Capsídeo/genética , Células Cultivadas , Análise Mutacional de DNA , Feminino , Camundongos , Camundongos SCID , Vírus Miúdo do Camundongo/genética , Proteínas Mutantes/genética , Infecções por Parvoviridae/patologia , Ensaio de Placa Viral , Virulência
15.
J Virol ; 81(23): 13015-27, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17898054

RESUMO

To initiate DNA synthesis, the NS1 protein of minute virus of mice (MVM) first binds to a simple cognate recognition sequence in the viral origins, comprising two to three tandem copies of the tetranucleotide TGGT. However, this motif is also widely dispersed throughout the viral genome. Using an immunoselection procedure, we show that NS1 specifically binds to many internal sites, so that all viral fragments of more than approximately 170 nucleotides effectively compete for NS1, often binding with higher affinity to these internal sites than to sites in the origins. We explore the diversity of the internal sites using competitive binding and DNase I protection assays and show that they vary between two extreme forms. Simple sites with three somewhat degenerate, tandem TGGT reiterations bind effectively but are minimally responsive to ATP, while complex sites, containing multiple variably spaced TGGT elements arranged as opposing clusters, bind NS1 with an affinity that can be enhanced approximately 10-fold by ATP. Using immuno-selection procedures with randomized sequences embedded within specific regions of the genome, we explore possible binding configurations in these two types of site. We conclude that binding is modular, combinatorial, and highly flexible. NS1 recognizes two to six variably spaced, more-or-less degenerate forms of the 5'-TGGT-3' motif, so that it binds efficiently to a wide variety of sequences. Thus, despite complex coding constraints, binding sites are configured at frequent intervals throughout duplex forms of viral DNA, suggesting that NS1 may serve as a form of chromatin to protect and tailor the environment of replicating genomes.


Assuntos
DNA Viral/metabolismo , Vírus Miúdo do Camundongo/fisiologia , Proteínas não Estruturais Virais/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Pegada de DNA , DNA Viral/genética , Camundongos , Ligação Proteica
16.
Viruses ; 10(2)2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29385689

RESUMO

Combining virus-enhanced immunogenicity with direct delivery of immunomodulatory molecules would represent a novel treatment modality for melanoma, and would require development of new viral vectors capable of targeting melanoma cells preferentially. Here we explore the use of rodent protoparvoviruses targeting cells of the murine melanoma model B16F10. An uncloned stock of mouse parvovirus 1 (MPV1) showed some efficacy, which was substantially enhanced following serial passage in the target cell. Molecular cloning of the genes of both starter and selected virus pools revealed considerable sequence diversity. Chimera analysis mapped the majority of the improved infectivity to the product of the major coat protein gene, VP2, in which linked blocks of amino acid changes and one or other of two apparently spontaneous mutations were selected. Intragenic chimeras showed that these represented separable components, both contributing to enhanced infection. Comparison of biochemical parameters of infection by clonal viruses indicated that the enhancement due to changes in VP2 operates after the virus has bound to the cell surface and penetrated into the cell. Construction of an in silico homology model for MPV1 allowed placement of these changes within the capsid shell, and revealed aspects of the capsid involved in infection initiation that had not been previously recognized.


Assuntos
Proteínas do Capsídeo/genética , Melanoma/virologia , Mutação , Parvovirus/genética , Proteínas Virais/genética , Animais , Capsídeo/química , Proteínas do Capsídeo/química , Linhagem Celular , Evolução Molecular , Expressão Gênica , Vetores Genéticos/genética , Vetores Genéticos/isolamento & purificação , Células HEK293 , Humanos , Camundongos , Modelos Moleculares , Infecções por Parvoviridae/virologia , Parvovirus/isolamento & purificação , Parvovirus/patogenicidade , Seleção Genética , Inoculações Seriadas , Virulência/genética , Replicação Viral/genética
17.
J Immunother Cancer ; 6(1): 78, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30081947

RESUMO

In this White Paper, we discuss the current state of microbial cancer therapy. This paper resulted from a meeting ('Microbial Based Cancer Therapy') at the US National Cancer Institute in the summer of 2017. Here, we define 'Microbial Therapy' to include both oncolytic viral therapy and bacterial anticancer therapy. Both of these fields exploit tumor-specific infectious microbes to treat cancer, have similar mechanisms of action, and are facing similar challenges to commercialization. We designed this paper to nucleate this growing field of microbial therapeutics and increase interactions between researchers in it and related fields. The authors of this paper include many primary researchers in this field. In this paper, we discuss the potential, status and opportunities for microbial therapy as well as strategies attempted to date and important questions that need to be addressed. The main areas that we think will have the greatest impact are immune stimulation, control of efficacy, control of delivery, and safety. There is much excitement about the potential of this field to treat currently intractable cancer. Much of the potential exists because these therapies utilize unique mechanisms of action, difficult to achieve with other biological or small molecule drugs. By better understanding and controlling these mechanisms, we will create new therapies that will become integral components of cancer care.


Assuntos
Bactérias , Terapia Biológica/métodos , Vetores Genéticos , Neoplasias/prevenção & controle , Neoplasias/terapia , Vírus , Animais , Bactérias/genética , Terapia Biológica/normas , Terapia Biológica/tendências , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Estudos Clínicos como Assunto , Terapia Combinada , Avaliação Pré-Clínica de Medicamentos , Engenharia Genética , Vetores Genéticos/genética , Humanos , Neoplasias/etiologia , Terapia Viral Oncolítica , Resultado do Tratamento , Vírus/genética
18.
Virology ; 506: 141-151, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28391161

RESUMO

The protoparvovirus early promoters, e.g. P4 of Minute Virus of Mice (MVM), play a critical role during infection. Initial P4 activity depends on the host transcription machinery only. Since this is cell-type dependent, it is hypothesized that P4 is a host cell-type range determinant. Yet host range determinants have mapped mostly to capsid, never P4. Here we test the hypothesis using the mouse embryo as a model system. Disruption of the CRE element of P4 drastically decreased infection levels without altering range. However, when we swapped promoter elements of MVM P4 with those from equivalent regions of the closely related H1 virus, we observed elimination of infection in fibroblasts and chondrocytes and the acquisition of infection in skeletal muscle. We conclude that P4 is a host range determinant and a target for modifying the productive infection potential of the virus - an important consideration in adapting these viruses for oncotherapy.


Assuntos
Vírus Miúdo do Camundongo/fisiologia , Infecções por Parvoviridae/virologia , Regiões Promotoras Genéticas , Doenças dos Roedores/virologia , Proteínas não Estruturais Virais/genética , Animais , Regulação Viral da Expressão Gênica , Especificidade de Hospedeiro , Camundongos , Vírus Miúdo do Camundongo/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
19.
Virology ; 510: 216-223, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28750325

RESUMO

In minute virus of mice (MVM) capsids, icosahedral five-fold channels serve as portals mediating genome packaging, genome release, and the phased extrusion of viral peptides. Previous studies suggest that residues L172 and V40 are essential for channel function. The structures of MVMi wildtype, and mutant L172T and V40A virus-like particles (VLPs) were solved from cryo-EM data. Two constriction points, termed the mid-gate and inner-gate, were observed in the channels of wildtype particles, involving residues L172 and V40 respectively. While the mid-gate of V40A VLPs appeared normal, in L172T adjacent channel walls were altered, and in both mutants there was major disruption of the inner-gate, demonstrating that direct L172:V40 bonding is essential for its structural integrity. In wildtype particles, residues from the N-termini of VP2 map into claw-like densities positioned below the channel opening, which become disordered in the mutants, implicating both L172 and V40 in the organization of VP2 N-termini.


Assuntos
Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Vírus Miúdo do Camundongo/ultraestrutura , Mutação , Virossomos/ultraestrutura
20.
Viruses ; 9(11)2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29084163

RESUMO

LuIII, a protoparvovirus pathogenic to rodents, replicates in human mitotic cells, making it applicable for use to kill cancer cells. This virus group includes H-1 parvovirus (H-1PV) and minute virus of mice (MVM). However, LuIII displays enhanced oncolysis compared to H-1PV and MVM, a phenotype mapped to the major capsid viral protein 2 (VP2). This suggests that within LuIII VP2 are determinants for improved tumor lysis. To investigate this, the structure of the LuIII virus-like-particle was determined using single particle cryo-electron microscopy and image reconstruction to 3.17 Å resolution, and compared to the H-1PV and MVM structures. The LuIII VP2 structure, ordered from residue 37 to 587 (C-terminal), had the conserved VP topology and capsid morphology previously reported for other protoparvoviruses. This includes a core ß-barrel and α-helix A, a depression at the icosahedral 2-fold and surrounding the 5-fold axes, and a single protrusion at the 3-fold axes. Comparative analysis identified surface loop differences among LuIII, H-1PV, and MVM at or close to the capsid 2- and 5-fold symmetry axes, and the shoulder of the 3-fold protrusions. The 2-fold differences cluster near the previously identified MVM sialic acid receptor binding pocket, and revealed potential determinants of protoparvovirus tumor tropism.


Assuntos
Vírus Oncolíticos/química , Vírus Oncolíticos/ultraestrutura , Parvovirus/química , Parvovirus/ultraestrutura , Animais , Capsídeo/química , Capsídeo/ultraestrutura , Proteínas do Capsídeo/química , Microscopia Crioeletrônica/métodos , Parvovirus H-1/química , Parvovirus H-1/ultraestrutura , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Camundongos , Vírus Miúdo do Camundongo/química , Vírus Miúdo do Camundongo/ultraestrutura , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA