Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Biol ; 20(6): e3001685, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35731837

RESUMO

Historically, emerging and reemerging infectious diseases have caused large, deadly, and expensive multinational outbreaks. Often outbreak investigations aim to identify who infected whom by reconstructing the outbreak transmission tree, which visualizes transmission between individuals as a network with nodes representing individuals and branches representing transmission from person to person. We compiled a database, called OutbreakTrees, of 382 published, standardized transmission trees consisting of 16 directly transmitted diseases ranging in size from 2 to 286 cases. For each tree and disease, we calculated several key statistics, such as tree size, average number of secondary infections, the dispersion parameter, and the proportion of cases considered superspreaders, and examined how these statistics varied over the course of each outbreak and under different assumptions about the completeness of outbreak investigations. We demonstrated the potential utility of the database through 2 short analyses addressing questions about superspreader epidemiology for a variety of diseases, including Coronavirus Disease 2019 (COVID-19). First, we found that our transmission trees were consistent with theory predicting that intermediate dispersion parameters give rise to the highest proportion of cases causing superspreading events. Additionally, we investigated patterns in how superspreaders are infected. Across trees with more than 1 superspreader, we found preliminary support for the theory that superspreaders generate other superspreaders. In sum, our findings put the role of superspreading in COVID-19 transmission in perspective with that of other diseases and suggest an approach to further research regarding the generation of superspreaders. These data have been made openly available to encourage reuse and further scientific inquiry.


Assuntos
COVID-19 , Árvores de Decisões , COVID-19/epidemiologia , Surtos de Doenças , Transmissão de Doença Infecciosa , Humanos
2.
medRxiv ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38712118

RESUMO

Background: Contact plays a critical role in infectious disease transmission. Characterizing heterogeneity in contact patterns across individuals, time, and space is necessary to inform accurate estimates of transmission risk, particularly to explain superspreading, predict age differences in vulnerability, and inform social distancing policies. Current respiratory disease models often rely on data from the 2008 POLYMOD study conducted in Europe, which is now outdated and potentially unrepresentative of behavior in the US. We seek to understand the variation in contact patterns across spatial scales and demographic and social classifications, whether there is seasonality to contact patterns, and what social behavior looks like at baseline in the absence of an ongoing pandemic. Methods: We analyze spatiotemporal non-household contact patterns across 11 million survey responses from June 2020 - April 2021 post-stratified on age and gender to correct for sample representation. To characterize spatiotemporal heterogeneity in respiratory contact patterns at the county-week scale, we use generalized additive models. In the absence of pre-pandemic data on contact in the US, we also use a regression approach to produce baseline contact estimates to fill this gap. Findings: Although contact patterns varied over time during the pandemic, contact is relatively stable after controlling for disease. We find that the mean number of non-household contacts is spatially heterogeneous regardless of disease. There is additional heterogeneity across age, gender, race/ethnicity, and contact setting, with mean contact decreasing with age and lower in women. The contacts of white individuals and contacts at work or social events change the most under increased national incidence. Interpretation: We develop the first county-level estimates of non-pandemic contact rates for the US that can fill critical gaps in parameterizing disease models. Our results identify that spatiotemporal, demographic, and social heterogeneity in contact patterns is highly structured, informing the risk landscape of respiratory disease transmission in the US.

3.
JMIR Public Health Surveill ; 9: e42128, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36877548

RESUMO

BACKGROUND: Face mask wearing has been identified as an effective strategy to prevent the transmission of SARS-CoV-2, yet mask mandates were never imposed nationally in the United States. This decision resulted in a patchwork of local policies and varying compliance, potentially generating heterogeneities in the local trajectories of COVID-19 in the United States. Although numerous studies have investigated the patterns and predictors of masking behavior nationally, most suffer from survey biases and none have been able to characterize mask wearing at fine spatial scales across the United States through different phases of the pandemic. OBJECTIVE: Urgently needed is a debiased spatiotemporal characterization of mask-wearing behavior in the United States. This information is critical to further assess the effectiveness of masking, evaluate the drivers of transmission at different time points during the pandemic, and guide future public health decisions through, for example, forecasting disease surges. METHODS: We analyzed spatiotemporal masking patterns in over 8 million behavioral survey responses from across the United States, starting in September 2020 through May 2021. We adjusted for sample size and representation using binomial regression models and survey raking, respectively, to produce county-level monthly estimates of masking behavior. We additionally debiased self-reported masking estimates using bias measures derived by comparing vaccination data from the same survey to official records at the county level. Lastly, we evaluated whether individuals' perceptions of their social environment can serve as a less biased form of behavioral surveillance than self-reported data. RESULTS: We found that county-level masking behavior was spatially heterogeneous along an urban-rural gradient, with mask wearing peaking in winter 2021 and declining sharply through May 2021. Our results identified regions where targeted public health efforts could have been most effective and suggest that individuals' frequency of mask wearing may be influenced by national guidance and disease prevalence. We validated our bias correction approach by comparing debiased self-reported mask-wearing estimates with community-reported estimates, after addressing issues of a small sample size and representation. Self-reported behavior estimates were especially prone to social desirability and nonresponse biases, and our findings demonstrated that these biases can be reduced if individuals are asked to report on community rather than self behaviors. CONCLUSIONS: Our work highlights the importance of characterizing public health behaviors at fine spatiotemporal scales to capture heterogeneities that may drive outbreak trajectories. Our findings also emphasize the need for a standardized approach to incorporating behavioral big data into public health response efforts. Even large surveys are prone to bias; thus, we advocate for a social sensing approach to behavioral surveillance to enable more accurate estimates of health behaviors. Finally, we invite the public health and behavioral research communities to use our publicly available estimates to consider how bias-corrected behavioral estimates may improve our understanding of protective behaviors during crises and their impact on disease dynamics.


Assuntos
COVID-19 , Humanos , Estados Unidos/epidemiologia , Autorrelato , Estudos Transversais , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Comportamentos Relacionados com a Saúde
4.
medRxiv ; 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36656779

RESUMO

Background: Face mask-wearing has been identified as an effective strategy to prevent transmission of SARS-CoV-2, yet mask mandates were never imposed nationally in the United States. This decision resulted in a patchwork of local policies and varying compliance potentially generating heterogeneities in the local trajectories of COVID-19 in the U.S. While numerous studies have investigated patterns and predictors of masking behavior nationally, most suffer from survey biases and none have been able to characterize mask-wearing at fine spatial scales across the U.S. through different phases of the pandemic. Objective: Urgently needed is a debiased spatiotemporal characterization of mask-wearing behavior in the U.S. This information is critical to further assess the effectiveness of masking, evaluate drivers of transmission at different time points during the pandemic, and guide future public health decisions through, for example, forecasting disease surges. Methods: We analyze spatiotemporal masking patterns in over eight million behavioral survey responses from across the United States starting in September 2020 through May 2021. We adjust for sample size and representation using binomial regression models and survey raking, respectively, to produce county-level monthly estimates of masking behavior. We additionally debias self-reported masking estimates using bias measures derived by comparing vaccination data from the same survey to official records at the county-level. Lastly, we evaluate whether individuals' perceptions of their social environment can serve as a less biased form of behavioral surveillance than self-reported data. Results: We find that county-level masking behavior is spatially heterogeneous along an urban-rural gradient, with mask-wearing peaking in winter 2021 and declining sharply through May 2021. Our results identify regions where targeted public health efforts could have been most effective and suggest that individuals' frequency of mask-wearing may be influenced by national guidance and disease prevalence. We validate our bias-correction approach by comparing debiased self-reported mask-wearing estimates with community-reported estimates, after addressing issues of small sample size and representation. Self-reported behavior estimates are especially prone to social desirability and non-response biases and our findings demonstrate that these biases can be reduced if individuals are asked to report on community rather than self behaviors. Conclusions: Our work highlights the importance of characterizing public health behaviors at fine spatiotemporal scales to capture heterogeneities that may drive outbreak trajectories. Our findings also emphasize the need for a standardized approach to incorporating behavioral big data into public health response efforts. Even large surveys are prone to bias; thus, we advocate for a social sensing approach to behavioral surveillance to enable more accurate estimates of health behaviors. Finally, we invite the public health and behavioral research communities to use our publicly available estimates to consider how bias-corrected behavioral estimates may improve our understanding of protective behaviors during crises and their impact on disease dynamics.

5.
Lancet Infect Dis ; 23(4): 454-462, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36455590

RESUMO

BACKGROUND: More than four decades after the eradication of smallpox, the ongoing 2022 monkeypox outbreak and increasing transmission events of other orthopoxviruses necessitate a greater understanding of the global distribution of susceptibility to orthopoxviruses. We aimed to characterise the current global landscape of smallpox vaccination history and orthopoxvirus susceptibility. METHODS: We characterised the global landscape of smallpox vaccination at a subnational scale by integrating data on current demography with historical smallpox vaccination programme features (coverage and cessation dates) from eradication documents and published literature. We analysed this landscape to identify the factors that were most associated with geographical heterogeneity in current vaccination coverage. We considered how smallpox vaccination history might translate into age-specific susceptibility profiles for orthopoxviruses under different vaccination effectiveness scenarios. FINDINGS: We found substantial global spatial heterogeneity in the landscape of smallpox vaccination, with vaccination coverage estimated to range from 7% to 60% within admin-1 regions (ie, regions one administrative level below country) globally, with negligible uncertainty (99·6% of regions have an SD less than 5%). We identified that geographical variation in vaccination coverage was driven mostly by differences in subnational demography. Additionally, we found that susceptibility for orthopoxviruses was highly age specific based on age at cessation and age-specific coverage; however, the age profile was consistent across vaccine effectiveness values. INTERPRETATION: The legacy of smallpox eradication can be observed in the current landscape of smallpox vaccine protection. The strength and longevity of smallpox vaccination campaigns globally, combined with current demographic heterogeneity, have shaped the epidemiological landscape today, revealing substantial geographical variation in orthopoxvirus susceptibility. This study alerts public health decision makers to non-endemic regions that might be at greatest risk in the case of widespread and sustained transmission in the 2022 monkeypox outbreak and highlights the importance of demography and fine-scale spatial dynamics in predicting future public health risks from orthopoxviruses. FUNDING: US National Institutes of Health and US National Science Foundation.


Assuntos
Doenças Transmissíveis , Mpox , Orthopoxvirus , Vacina Antivariólica , Varíola , Humanos , Varíola/epidemiologia , Varíola/prevenção & controle , Vacinação
6.
Ther Adv Infect Dis ; 9: 20499361221099447, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651526

RESUMO

Background: An improved understanding of the clinico-epidemiology of bronchiolitis hospitalizations, a clinical surrogate of respiratory syncytial virus (RSV) disease, is critical to inform public health strategies for mitigating the in-patient burden of bronchiolitis in early life. Methods: A retrospective chart review was conducted of all bronchiolitis first admissions (N = 295) to the Children's Hospital at Dartmouth-Hitchcock, CHaD, between 1 November 2010 and 31 October 2017 using the relevant International Classification of Diseases (ICD)-9 and ICD-10 codes for this illness. Abstracted data included laboratory confirmation of RSV infection, severity of illness, duration of hospitalization, age at admission in days, weight at admission, prematurity, siblings, and relevant medical pre-existing conditions. Results: Admissions for bronchiolitis were strongly associated with age of the child, the calendar month of an infant's birth, and the presence of older children in the family. Medical risk factors associated with admission included premature birth and underlying cardiopulmonary disease. Conclusion: The very early age of hospitalization emphasizes the high penetration of RSV in the community, by implication the limited protection afforded by maternal antibody, and the complexity of protecting infants from this infection. Plain Language Summary: Although risks for respiratory syncytial virus (RSV)/bronchiolitis hospitalization are well described, few studies have examined, with precision, the age-related frequency and severity of RSV/bronchiolitis. We also explore the implications of RSV clinico-epidemiology for our understanding of the pathogenesis of the disease and development of optimal approaches to prevention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA