Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Assist Reprod Genet ; 30(3): 325-32, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23274510

RESUMO

PURPOSE: Spermatogonial stem cells are affected by the interactions of extrinsic signals produced by components of the microenvironment niche, in addition to the chemical and physical properties of the extracellular matrix. Therefore, this study was initiated to assess the interaction of these cells on a synthetic nanofibrillar extracellular matrix that mimicked the geometry and nanotopography of the basement membrane for cellular growth. METHODS: This study has used a variety of experimental approaches to investigate the interaction of mouse neonatal-derived spermatogonial stem-like cells on a synthetic random oriented three-dimensional nanofibrillar matrix composed of electrospun polyamide nanofibers (Ultra-Web™). RESULTS: Spermatogonial stem-like cell colonies were characterized by their ability to express α6-integrin, Thy-1, PLZF, and ß1-integrin. After culture of cells on the nanofibrillar surfaces for 7 days, the number of colonies, the number of cells in each colony, and the average area of colonies were increased (P < 0.05). However, the expression difference of related markers in both groups was not significant. A significantly higher proliferation and survival was observed in the nanofibrillar group (P < 0.05). After transplantation into the testes of busulfan-treated adult mice, spermatogonial stem-like cell colonies that were cultured on the nanofibrillar surface demonstrated functionality, as verified by their ability to migrate to the seminiferous basal membrane, where they produced additional colonies. CONCLUSIONS: These results have suggested that electrospun nanofibrillar surfaces could provide a more favorable microenvironment for in vitro short term culture of spermatogonial stem-like cell colonies.


Assuntos
Técnicas de Cultura de Células/métodos , Nanofibras/química , Espermatogônias/citologia , Células-Tronco/citologia , Animais , Diferenciação Celular , Proliferação de Células , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Feminino , Masculino , Camundongos , Gravidez , Células-Tronco/metabolismo , Propriedades de Superfície
2.
Int J Fertil Steril ; 5(4): 217-24, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25210606

RESUMO

BACKGROUND: This study compared neonatal and adult mice-derived Sertoli cells (NSCs and ASCs) to examine the influence of feeder cells derived from donors of different ages on the maintenance of mouse spermatogonial stem cells (SSCs) in vitro. MATERIALS AND METHODS: SSCs were derived from the testes of six-day-old mice. They were subsequently transferred to Sertoli cells which were isolated by datura stramonium agglutinin (DSA) lectin from neonatal and adult mice for five days. RESULTS: The numbers of spermatogonial colonies, the numbers of cells per colony, and cloning efficiency were assessed in presence of NSCs and ASCs. The expression of α6- and ß1-integrin- positive cells was evaluated. Moreover, the functionality of the cells was assessed by their transplantation into the testes of busulfan-induced infertile mice. Colony efficiency assay showed that the number of colonies derived from single spermatogonial cells were significantly higher on NSCs. Additionally, the transplantation of dissociated colonies into the testes of busulfan-induced infertile mice showed their migration to the seminiferous basal membrane. CONCLUSION: These results show that NSCs may provide a more favorable microenvironment in comparison with ASCs for in vitro culture of spermatogonial colonies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA