Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
RSC Adv ; 9(23): 13054-13064, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35520779

RESUMO

Vascular graft replacement remains the optimal treatment option for many vascular diseases despite advances in endovascular surgery. In this study, we proposed the use of surface topographical cues to align and maintain the phenotype of vascular smooth muscle cells (vSMCs) which were reported as one of the vital limitations for successful graft replacement. An auxiliary electrospinning setup has been developed to collect circumferentially aligned fibres on a 3D tubular format; this micro-architecture was found to be similar to the tunica media layer of blood vessels. The presence of aligned fibres served as a signaling modality to induce cell alignment and the maintenance of the contractile phenotype. vSMCs cultured on the 3D aligned fibrous substrate were found to exhibit better cell proliferation ability and enhanced cell-shape directionality. The functional expression of the two representative intracellular contractile proteins (i.e. α-SMA and MHC) was found to exhibit definitive markers that are orderly organized as microfilament bundles. Collectively, the result suggests a possibility of adapting the 3D aligned tubular scaffold to enhance and regulate cell function along with the additional tunability of scaffold diameter and thicknesses for tailoring to the needs of individual patients or future ex vivo studies.

2.
Biomed Mater ; 9(1): 015010, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24448654

RESUMO

An integrated approach is proposed to incorporate silicon and silver into hydroxyapatite (HA) to enhance the biological response and reduce implant-related infection in bone substitutes. This study examined the responses of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacteria to silver, silicon-containing apatite (Ag,Si-HA). Scanning electron microscopy images revealed significant reduction in adherence of S. aureus and E. coli bacteria on Ag,Si-HA as compared to HA. The antibacterial property of Ag,Si-HA was shown from a 7-log reduction of S. aureus population in the test solution and on the sample's surface as compared to HA at day 7. Rapid inhibition of the adherent bacteria suggested that the antibacterial action of Ag incorporated in Ag,Si-HA could be attributed to the Ag(+) ions on the crystal surface rather than the released Ag(+) ions. Presence of Ag may influence the biological response of HA and as such, the long-term interaction between human adipose-derived mesenchymal stem cells and Ag,Si-HA was evaluated in-vitro. An alamarBlue™ assay showed higher cell proliferation for Ag,Si-HA as compared to HA from day 3 onwards. Immunofluorescence staining revealed well-spread actin cytoskeletons on Ag,Si-HA. In addition, signs of extracellular matrix secretion and biomineralization were observed on Ag,Si-HA at day 14 onwards. Results demonstrated enhanced bone differentiation on Ag,Si-HA, as indicated by a higher level of protein expressions (type 1 collagen and osteocalcin) from day 14 to 21. Therefore, the incorporation of Ag and Si complement each other by endowing HA with antibacterial property, and concurrently promoting biological performance of the cells.


Assuntos
Durapatita/química , Silício/química , Prata/química , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/microbiologia , Antibacterianos , Diferenciação Celular , Colágeno Tipo I/metabolismo , Citoesqueleto/metabolismo , Escherichia coli/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Íons , Teste de Materiais , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/microbiologia , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Osteocalcina/metabolismo , Staphylococcus aureus/efeitos dos fármacos
3.
J Biomed Mater Res B Appl Biomater ; 102(4): 651-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24155124

RESUMO

Biodegradable polymeric scaffolds have been widely used in tissue engineering as a platform for cell proliferation and subsequent tissue regeneration. Conventional microextrusion methods for three-dimensional (3D) scaffold fabrication were limited by their low resolution. Electrospinning, a form of electrohydrodynamic (EHD) printing, is an attractive method due to its capability of fabricating high-resolution scaffolds at the nanometer/micrometer scale level. However, the scaffold was composed of randomly orientated filaments which could not guide the cells in a specific direction. Furthermore, the pores of the electrospun scaffold were small, thus preventing cell infiltration. In this study, an alternative EHD jet printing (E-jetting) technique has been developed and employed to fabricate 3D polycaprolactone (PCL) scaffolds with desired filament orientation and pore size. The effect of PCL solution concentration was evaluated. Results showed that solidified filaments were achieved at concentration >70% (w/v). Uniform filaments of diameter 20 µm were produced via the E-jetting technique, and X-ray diffraction and attenuated total reflectance Fourier transform infrared spectroscopic analyses revealed that there was no physicochemical changes toward PCL. Scaffold with a pore size of 450 µm and porosity level of 92%, was achieved. A preliminary in vitro study illustrated that live chondrocytes were attaching on the outer and inner surfaces of collagen-coated E-jetted PCL scaffolds. E-jetted scaffolds increased chondrocytes extracellular matrix secretion, and newly formed matrices from chondrocytes contributed significantly to the mechanical strength of the scaffolds. All these results suggested that E-jetting is an alternative scaffold fabrication technique, which has the capability to construct 3D scaffolds with aligned filaments and large pore sizes for tissue engineering applications.


Assuntos
Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais , Implantes Absorvíveis , Animais , Técnicas de Cultura de Células/métodos , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Materiais Revestidos Biocompatíveis , Dopamina/farmacologia , Proteínas da Matriz Extracelular/metabolismo , Teste de Materiais , Poliésteres , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Sus scrofa , Suínos , Resistência à Tração , Difração de Raios X
4.
J Biomed Mater Res A ; 101(9): 2456-64, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23349126

RESUMO

The long-term success of a biomaterial used during surgery may be compromised by infection. A possible effective solution is to make the biomaterial osteoconductive and antibacterial. A range of silver-substituted hydroxyapatite (AgHA) of up to 1.1 wt. % of Ag was synthesized. AgHA displayed a rod-like morphology of dimensions ~50 nm in length and ~15 nm in width. Phase-pure AgHA was demonstrated in the X-ray diffraction patterns and Fourier transform infrared spectroscopy spectra. Comparing with hydroxyaptite (HA), 0.5AgHA exhibited a 3-log reduction in the number of bacteria. Diffusion of the entrapped Ag(+) ions towards the crystal structure surface was revealed by an increase of 6 at. % Ag in the X-ray photoelectron spectroscopy results. Furthermore, less than 0.5 ppm of Ag(+) ions being released from 0.5AgHA into the deionized water medium was evidenced from the inductively coupled plasma mass spectrometry results. AgHA produced by co-precipitation gave rise to minimal release of Ag(+) ions. It was hypothesized that the diffused surface Ag(+) ions damaged the bacteria cell membrane and impede its replication. With the culturing time, significant increase in the number of human mesenchymal stem cells (p < 0.05) was demonstrated on 0.5AgHA.


Assuntos
Materiais Biocompatíveis/química , Hidroxiapatitas/química , Prata/química , Antibacterianos/química , Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia , Células Cultivadas , Humanos , Teste de Materiais , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Osseointegração , Prata/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Difração de Raios X
5.
J Mater Chem B ; 1(43): 5971-5976, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-32261064

RESUMO

Current surgical and repair treatments for articular cartilage defects still do not give satisfactory long-term results. Scaffold-based tissue engineering is the subject of much intensive interest. However, one major hurdle is that it is unable to accurately replicate the internal three dimensional (3D) microstructure of cartilage. In this work, a novel electrohydrodynamic printing (E-Jetting) technique was employed to fabricate 3D polycaprolactone (PCL) scaffolds, followed by collagen grafting mediated by polydopamine. Surface topography, chemical composition, and wettability of the scaffolds before and after surface functionalization were characterized. Porcine chondrocytes were seeded within the scaffolds for chondrogenesis evaluation. The results showed that a 3D PCL scaffold with controlled fibre diameter, orientation, and pore size was fabricated by the E-Jetting system. The surface functionalization made the PCL scaffold hydrophilic and favourable for cell attachment. The chondrocytes maintained their healthy phenotypes within the collagen grafted PCL scaffold. The increased production of sulfated glycosaminoglycan and highly expressed collagen type II demonstrated that collagen had a positive role in stimulating chondrogenesis and the collagen grafted PCL scaffold was effective in cartilage regeneration.

6.
J Biomed Mater Res B Appl Biomater ; 100(1): 285-91, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22102599

RESUMO

Favorable cell-material interaction and the absence of undesirable reaction from the host body defence system play a critical role in determining the success and long-term survival of the implants. Substitution of various elements into hydroxyapatite (HA) has been done to alter its chemical composition, thereby mimicking that of the bone mineral. In this study, a cosubstituted nanosized apatite (Ag/Si-HA) containing Ag (0.3 wt %) and Si (0.8 wt %) was synthesized by an aqueous precipitation technique. The synthesized Ag/Si-HA displayed a rod-like morphology of dimensions ~50 nm in length and ~15 nm in width, as observed from the transmission electron microscope image. With an increase in temperature, the aspect ratio of nanosized Ag/Si-HA decreased, whilst the size increased. Autoclaving was used to achieve sufficient crystallinity while maintaining the rod-like morphology and size that were comparable to that of the bone apatite. A pure Ag/Si-HA was produced without any undesirable secondary phases, as evidenced from the X-ray diffraction and thermal gravimetric results. The Ag/Si cosubstitution affected the lattice cell parameters, in particularly the a- and c- axes which further led to an expansion of the unit cell volume. In addition, the relative intensity of the hydroxyl vibrational bands was reduced. These results demonstrated that a stable phase-pure Ag/Si-HA was produced using an aqueous precipitation reaction.


Assuntos
Durapatita/química , Durapatita/síntese química , Silício/química , Prata/química , Osso e Ossos/química
7.
Chem Commun (Camb) ; 47(35): 9849-51, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21808798

RESUMO

ZnSb nanotubes were grown through a template free electrodeposition method under over-potential conditions. The growth of the nanotubes was attributed to the template effect from H(2) bubbles. Due to their hollow structure, the ZnSb nanotubes depicted better Li ion storage performance compared to that of ZnSb nanoparticles deposited under different conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA