Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cells ; 11(17)2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36078060

RESUMO

The red alga Neopyropia yezoensis undergoes polarized elongation and asymmetrical cell division of the apical stem cell during tip growth in filamentous generations of its life cycle: the conchocelis and conchosporangium. Side branches are also produced via tip growth, a process involving the regeneration and asymmetrical division of the apical stem cell. Here, we demonstrate that auxin plays a crucial role in these processes by using the auxin antagonist 2-(1H-Indol-3-yl)-4-oxo-4-phenyl-butyric acid (PEO-IAA), which specifically blocks the activity of the auxin receptor TRANSPORT INHIBITOR RESPONSE1 (TIR1) in land plants. PEO-IAA repressed both the regeneration and polarized tip growth of the apical stem cell in single-celled conchocelis; this phenomenon was reversed by treatment with the auxin indole-3-acetic acid (IAA). In addition, tip growth of the conchosporangium was accelerated by IAA treatment but repressed by PEO-IAA treatment. These findings indicate that auxin regulates polarized tip cell growth and that an auxin receptor-like protein is present in N. yezoensis. The sensitivity to different 5-alkoxy-IAA analogs differs considerably between N. yezoensis and Arabidopsis thaliana. N. yezoensis lacks a gene encoding TIR1, indicating that its auxin receptor-like protein differs from the auxin receptor of terrestrial plants. These findings shed light on auxin-induced mechanisms and the regulation of tip growth in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Rodófitas , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas F-Box/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Receptores de Superfície Celular/metabolismo , Rodófitas/metabolismo , Células-Tronco/metabolismo
2.
Mar Environ Res ; 137: 188-195, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29459067

RESUMO

In the filamentous brown alga Ectocarpus siliculosus, male and female sex is expressed during the haploid parthenosporophyte phase of the life cycle. Here, we found that male parthenosporophytes displayed thermotolerance whereas female specimens displayed severely reduced viability at 25 °C and 28 °C. Profiling of polyunsaturated fatty acids showed that n-3 and n-6 were the predominant species in male and female parthenosporophytes, respectively, and that the n-3/n-6 fatty acid ratio was not affected by a temperature change. Both male and female parthenosporophytes contained the sterols fucosterol, cholesterol, and ergosterol, but these were present at higher levels at 10-25 °C in female specimens than in males. Thus, these fatty acids and sterols would be expected to make the membranes more rigid in the female compared to the male, which is opposite to the paradigm that increased rigidity confers thermotolerance. Our results suggest that the sex-dependent thermotolerance in E. siliculosus parthenosporophytes is not explained by the relationship between membrane fluidity and differences in fatty acids and sterol compositions.


Assuntos
Colesterol/metabolismo , Ácidos Graxos/metabolismo , Phaeophyceae/fisiologia , Termotolerância/fisiologia , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA