Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Rev Genet ; 22(8): 502-517, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833443

RESUMO

Almost 20 years have passed since the first reference genome assemblies were published for Plasmodium falciparum, the deadliest malaria parasite, and Anopheles gambiae, the most important mosquito vector of malaria in sub-Saharan Africa. Reference genomes now exist for all human malaria parasites and nearly half of the ~40 important vectors around the world. As a foundation for genetic diversity studies, these reference genomes have helped advance our understanding of basic disease biology and drug and insecticide resistance, and have informed vaccine development efforts. Population genomic data are increasingly being used to guide our understanding of malaria epidemiology, for example by assessing connectivity between populations and the efficacy of parasite and vector interventions. The potential value of these applications to malaria control strategies, together with the increasing diversity of genomic data types and contexts in which data are being generated, raise both opportunities and challenges in the field. This Review discusses advances in malaria genomics and explores how population genomic data could be harnessed to further support global disease control efforts.


Assuntos
Malária/parasitologia , Metagenômica/tendências , Mosquitos Vetores/genética , Plasmodium falciparum/genética , Animais , Anopheles/genética , Antimaláricos/farmacologia , Resistência a Medicamentos , Genes de Insetos , Genes de Protozoários , Humanos , Malária/prevenção & controle , Vacinas Antimaláricas , Plasmodium falciparum/efeitos dos fármacos
2.
PLoS Pathog ; 18(12): e1010993, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36542676

RESUMO

The human malaria parasite Plasmodium falciparum is globally widespread, but its prevalence varies significantly between and even within countries. Most population genetic studies in P. falciparum focus on regions of high transmission where parasite populations are large and genetically diverse, such as sub-Saharan Africa. Understanding population dynamics in low transmission settings, however, is of particular importance as these are often where drug resistance first evolves. Here, we use the Pacific Coast of Colombia and Ecuador as a model for understanding the population structure and evolution of Plasmodium parasites in small populations harboring less genetic diversity. The combination of low transmission and a high proportion of monoclonal infections means there are few outcrossing events and clonal lineages persist for long periods of time. Yet despite this, the population is evolutionarily labile and has successfully adapted to changes in drug regime. Using newly sequenced whole genomes, we measure relatedness between 166 parasites, calculated as identity by descent (IBD), and find 17 distinct but highly related clonal lineages, six of which have persisted in the region for at least a decade. This inbred population structure is captured in more detail with IBD than with other common population structure analyses like PCA, ADMIXTURE, and distance-based trees. We additionally use patterns of intra-chromosomal IBD and an analysis of haplotypic variation to explore past selection events in the region. Two genes associated with chloroquine resistance, crt and aat1, show evidence of hard selective sweeps, while selection appears soft and/or incomplete at three other key resistance loci (dhps, mdr1, and dhfr). Overall, this work highlights the strength of IBD analyses for studying parasite population structure and resistance evolution in regions of low transmission, and emphasizes that drug resistance can evolve and spread in small populations, as will occur in any region nearing malaria elimination.


Assuntos
Antimaláricos , Malária Falciparum , Parasitos , Animais , Humanos , Plasmodium falciparum/genética , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Cloroquina/uso terapêutico , Resistência a Medicamentos/genética , América do Sul/epidemiologia
3.
Malar J ; 23(1): 49, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360625

RESUMO

BACKGROUND: Over the last decades, the number of malaria cases has drastically reduced in Cambodia. As the overall prevalence of malaria in Cambodia declines, residual malaria transmission becomes increasingly fragmented over smaller remote regions. The aim of this study was to get an insight into the burden and epidemiological parameters of Plasmodium infections on the forest-fringe of Cambodia. METHODS: 950 participants were recruited in the province of Mondulkiri in Cambodia and followed up from 2018 to 2020. Whole-blood samples were processed for Plasmodium spp. identification by PCR as well as for a serological immunoassay. A risk factor analysis was conducted for Plasmodium vivax PCR-detected infections throughout the study, and for P. vivax seropositivity at baseline. To evaluate the predictive effect of seropositivity at baseline on subsequent PCR-positivity, an analysis of P. vivax infection-free survival time stratified by serological status at baseline was performed. RESULTS: Living inside the forest significantly increased the odds of P. vivax PCR-positivity by a factor of 18.3 (95% C.I. 7.7-43.5). Being a male adult was also a significant predictor of PCR-positivity. Similar risk profiles were identified for P. vivax seropositivity. The survival analysis showed that serological status at baseline significantly correlated with subsequent infection. Serology is most informative outside of the forest, where 94.0% (95% C.I. 90.7-97.4%) of seronegative individuals survived infection-free, compared to 32.4% (95% C.I.: 22.6-46.6%) of seropositive individuals. CONCLUSION: This study justifies the need for serological diagnostic assays to target interventions in this region, particularly in demographic groups where a lot of risk heterogeneity persists, such as outside of the forest.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Adulto , Humanos , Masculino , Malária Falciparum/epidemiologia , Plasmodium falciparum , Plasmodium vivax , Camboja/epidemiologia , Incidência , Estudos Transversais , Malária/diagnóstico , Malária/epidemiologia , Malária Vivax/diagnóstico , Malária Vivax/epidemiologia , Florestas
4.
PLoS Genet ; 16(11): e1009101, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33196661

RESUMO

Characterising connectivity between geographically separated biological populations is a common goal in many fields. Recent approaches to understanding connectivity between malaria parasite populations, with implications for disease control efforts, have used estimates of relatedness based on identity-by-descent (IBD). However, uncertainty around estimated relatedness has not been accounted for. IBD-based relatedness estimates with uncertainty were computed for pairs of monoclonal Plasmodium falciparum samples collected from five cities on the Colombian-Pacific coast where long-term clonal propagation of P. falciparum is frequent. The cities include two official ports, Buenaventura and Tumaco, that are separated geographically but connected by frequent marine traffic. Fractions of highly-related sample pairs (whose classification using a threshold accounts for uncertainty) were greater within cities versus between. However, based on both highly-related fractions and on a threshold-free approach (Wasserstein distances between parasite populations) connectivity between Buenaventura and Tumaco was disproportionally high. Buenaventura-Tumaco connectivity was consistent with transmission events involving parasites from five clonal components (groups of statistically indistinguishable parasites identified under a graph theoretic framework). To conclude, P. falciparum population connectivity on the Colombian-Pacific coast abides by accessibility not isolation-by-distance, potentially implicating marine traffic in malaria transmission with opportunities for targeted intervention. Further investigations are required to test this hypothesis. For the first time in malaria epidemiology (and to our knowledge in ecological and epidemiological studies more generally), we account for uncertainty around estimated relatedness (an important consideration for studies that plan to use genotype versus whole genome sequence data to estimate IBD-based relatedness); we also use threshold-free methods to compare parasite populations and identify clonal components. Threshold-free methods are especially important in analyses of malaria parasites and other recombining organisms with mixed mating systems where thresholds do not have clear interpretation (e.g. due to clonal propagation) and thus undermine the cross-comparison of studies.


Assuntos
Genoma de Protozoário/genética , Malária Falciparum/parasitologia , Modelos Genéticos , Plasmodium falciparum/genética , Colômbia/epidemiologia , Frequência do Gene , Técnicas de Genotipagem , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/transmissão , Cadeias de Markov , Plasmodium falciparum/isolamento & purificação , Polimorfismo de Nucleotídeo Único , Reprodução Assexuada/genética , Análise Espaço-Temporal , Incerteza
5.
PLoS Genet ; 16(10): e1009037, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33035220

RESUMO

Genetic surveillance of malaria parasites supports malaria control programmes, treatment guidelines and elimination strategies. Surveillance studies often pose questions about malaria parasite ancestry (e.g. how antimalarial resistance has spread) and employ statistical methods that characterise parasite population structure. Many of the methods used to characterise structure are unsupervised machine learning algorithms which depend on a genetic distance matrix, notably principal coordinates analysis (PCoA) and hierarchical agglomerative clustering (HAC). PCoA and HAC are sensitive to both the definition of genetic distance and algorithmic specification. Importantly, neither algorithm infers malaria parasite ancestry. As such, PCoA and HAC can inform (e.g. via exploratory data visualisation and hypothesis generation), but not answer comprehensively, key questions about malaria parasite ancestry. We illustrate the sensitivity of PCoA and HAC using 393 Plasmodium falciparum whole genome sequences collected from Cambodia and neighbouring regions (where antimalarial resistance has emerged and spread recently) and we provide tentative guidance for the use and interpretation of PCoA and HAC in malaria parasite genetic epidemiology. This guidance includes a call for fully transparent and reproducible analysis pipelines that feature (i) a clearly outlined scientific question; (ii) a clear justification of analytical methods used to answer the scientific question along with discussion of any inferential limitations; (iii) publicly available genetic distance matrices when downstream analyses depend on them; and (iv) sensitivity analyses. To bridge the inferential disconnect between the output of non-inferential unsupervised learning algorithms and the scientific questions of interest, tailor-made statistical models are needed to infer malaria parasite ancestry. In the absence of such models speculative reasoning should feature only as discussion but not as results.


Assuntos
Genética Populacional/estatística & dados numéricos , Malária Falciparum/epidemiologia , Epidemiologia Molecular , Plasmodium falciparum/genética , Algoritmos , Antimaláricos/uso terapêutico , Camboja/epidemiologia , Análise por Conglomerados , Resistência a Medicamentos/genética , Genótipo , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/patogenicidade , Aprendizado de Máquina não Supervisionado
6.
PLoS Genet ; 16(2): e1008576, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32053607

RESUMO

Although Plasmodium vivax parasites are the predominant cause of malaria outside of sub-Saharan Africa, they not always prioritised by elimination programmes. P. vivax is resilient and poses challenges through its ability to re-emerge from dormancy in the human liver. With observed growing drug-resistance and the increasing reports of life-threatening infections, new tools to inform elimination efforts are needed. In order to halt transmission, we need to better understand the dynamics of transmission, the movement of parasites, and the reservoirs of infection in order to design targeted interventions. The use of molecular genetics and epidemiology for tracking and studying malaria parasite populations has been applied successfully in P. falciparum species and here we sought to develop a molecular genetic tool for P. vivax. By assembling the largest set of P. vivax whole genome sequences (n = 433) spanning 17 countries, and applying a machine learning approach, we created a 71 SNP barcode with high predictive ability to identify geographic origin (91.4%). Further, due to the inclusion of markers for within population variability, the barcode may also distinguish local transmission networks. By using P. vivax data from a low-transmission setting in Malaysia, we demonstrate the potential ability to infer outbreak events. By characterising the barcoding SNP genotypes in P. vivax DNA sourced from UK travellers (n = 132) to ten malaria endemic countries predominantly not used in the barcode construction, we correctly predicted the geographic region of infection origin. Overall, the 71 SNP barcode outperforms previously published genotyping methods and when rolled-out within new portable platforms, is likely to be an invaluable tool for informing targeted interventions towards elimination of this resilient human malaria.


Assuntos
Surtos de Doenças/prevenção & controle , Genoma de Protozoário/genética , Técnicas de Genotipagem/métodos , Malária Vivax/transmissão , Plasmodium vivax/genética , África Oriental , Ásia , Conjuntos de Dados como Assunto , Erradicação de Doenças/métodos , Marcadores Genéticos/genética , Genótipo , Geografia , Humanos , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Metadados , Repetições de Microssatélites/genética , Plasmodium vivax/isolamento & purificação , Polimorfismo de Nucleotídeo Único/genética , Valor Preditivo dos Testes , América do Sul , Doença Relacionada a Viagens , Reino Unido , Sequenciamento Completo do Genoma
7.
Emerg Infect Dis ; 26(7): 1465-1469, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32207679

RESUMO

Cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection exported from mainland China could lead to self-sustained outbreaks in other countries. By February 2020, several countries were reporting imported SARS-CoV-2 cases. To contain the virus, early detection of imported SARS-CoV-2 cases is critical. We used air travel volume estimates from Wuhan, China, to international destinations and a generalized linear regression model to identify locations that could have undetected imported cases. Our model can be adjusted to account for exportation of cases from other locations as the virus spreads and more information on importations and transmission becomes available. Early detection and appropriate control measures can reduce the risk for transmission in all locations.


Assuntos
Betacoronavirus , Infecções por Coronavirus/epidemiologia , Pneumonia Viral/epidemiologia , COVID-19 , China/epidemiologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/transmissão , Humanos , Modelos Lineares , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Pneumonia Viral/transmissão , SARS-CoV-2 , Viagem
8.
Bioinformatics ; 35(22): 4656-4663, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31070704

RESUMO

MOTIVATION: Artificial intelligence, trained via machine learning (e.g. neural nets, random forests) or computational statistical algorithms (e.g. support vector machines, ridge regression), holds much promise for the improvement of small-molecule drug discovery. However, small-molecule structure-activity data are high dimensional with low signal-to-noise ratios and proper validation of predictive methods is difficult. It is poorly understood which, if any, of the currently available machine learning algorithms will best predict new candidate drugs. RESULTS: The quantile-activity bootstrap is proposed as a new model validation framework using quantile splits on the activity distribution function to construct training and testing sets. In addition, we propose two novel rank-based loss functions which penalize only the out-of-sample predicted ranks of high-activity molecules. The combination of these methods was used to assess the performance of neural nets, random forests, support vector machines (regression) and ridge regression applied to 25 diverse high-quality structure-activity datasets publicly available on ChEMBL. Model validation based on random partitioning of available data favours models that overfit and 'memorize' the training set, namely random forests and deep neural nets. Partitioning based on quantiles of the activity distribution correctly penalizes extrapolation of models onto structurally different molecules outside of the training data. Simpler, traditional statistical methods such as ridge regression can outperform state-of-the-art machine learning methods in this setting. In addition, our new rank-based loss functions give considerably different results from mean squared error highlighting the necessity to define model optimality with respect to the decision task at hand. AVAILABILITY AND IMPLEMENTATION: All software and data are available as Jupyter notebooks found at https://github.com/owatson/QuantileBootstrap. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Descoberta de Drogas , Aprendizado de Máquina , Software , Máquina de Vetores de Suporte
9.
PLoS Genet ; 13(10): e1007065, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29077712

RESUMO

With the rapidly increasing abundance and accessibility of genomic data, there is a growing interest in using population genetic approaches to characterize fine-scale dispersal of organisms, providing insight into biological processes across a broad range of fields including ecology, evolution and epidemiology. For sexually recombining haploid organisms such as the human malaria parasite P. falciparum, however, there have been no systematic assessments of the type of data and methods required to resolve fine scale connectivity. This analytical gap hinders the use of genomics for understanding local transmission patterns, a crucial goal for policy makers charged with eliminating this important human pathogen. Here we use data collected from four clinics with a catchment area spanning approximately 120 km of the Thai-Myanmar border to compare the ability of divergence (FST) and relatedness based on identity by descent (IBD) to resolve spatial connectivity between malaria parasites collected from proximal clinics. We found no relationship between inter-clinic distance and FST, likely due to sampling of highly related parasites within clinics, but a significant decline in IBD-based relatedness with increasing inter-clinic distance. This association was contingent upon the data set type and size. We estimated that approximately 147 single-infection whole genome sequenced parasite samples or 222 single-infection parasite samples genotyped at 93 single nucleotide polymorphisms (SNPs) were sufficient to recover a robust spatial trend estimate at this scale. In summary, surveillance efforts cannot rely on classical measures of genetic divergence to measure P. falciparum transmission on a local scale. Given adequate sampling, IBD-based relatedness provides a useful alternative, and robust trends can be obtained from parasite samples genotyped at approximately 100 SNPs.


Assuntos
Malária Falciparum/parasitologia , Plasmodium falciparum/genética , DNA de Protozoário/genética , Genoma de Protozoário/genética , Haplótipos/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética , Tailândia
10.
BMC Med ; 16(1): 241, 2018 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-30591060

RESUMO

The original article [1] contained an error in the presentation of Figure 1; this error has now been rectified and Figure 1 is now presented correctly.

11.
BMC Med ; 16(1): 190, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30333020

RESUMO

BACKGROUND: Recent global progress in scaling up malaria control interventions has revived the goal of complete elimination in many countries. Decreasing transmission intensity generally leads to increasingly patchy spatial patterns of malaria transmission in elimination settings, with control programs having to accurately identify remaining foci in order to efficiently target interventions. FINDINGS: The role of connectivity between different pockets of local transmission is of increasing importance as programs near elimination since humans are able to transfer parasites beyond the limits of mosquito dispersal, thus re-introducing parasites to previously malaria-free regions. Here, we discuss recent advances in the quantification of spatial epidemiology of malaria, particularly Plasmodium falciparum, in the context of transmission reduction interventions. Further, we highlight the challenges and promising directions for the development of integrated mapping, modeling, and genomic approaches that leverage disparate datasets to measure both connectivity and transmission. CONCLUSION: A more comprehensive understanding of the spatial transmission of malaria can be gained using a combination of parasite genetics and epidemiological modeling and mapping. However, additional molecular and quantitative methods are necessary to answer these public health-related questions.


Assuntos
Genômica/métodos , Malária/diagnóstico , Malária/genética , Parasitos/patogenicidade , Animais , Humanos , Malária/patologia , Malária Falciparum/epidemiologia
12.
Malar J ; 17(1): 196, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29764422

RESUMO

BACKGROUND: A number of recent malaria studies have used identity by descent (IBD) to study epidemiological processes relevant to malaria control. In this paper, a software package, hmmIBD, is introduced for estimating pairwise IBD between haploid genomes, such as those of the malaria parasite, sampled from one or two populations. Source code is freely available. METHODS: The performance of hmmIBD was verified using simulated data and benchmarked against an existing method for detecting IBD within populations. Code for all tests is freely available. The utility of hmmIBD for detecting IBD across populations was demonstrated using Plasmodium falciparum data from Cambodia and Ghana. RESULTS: Alongside an existing method, hmmIBD was highly accurate, sensitive and specific. It is fast, requiring only 70 s on average to analyse 50 whole genome sequences on a laptop computer, and scales linearly in the number of pairwise comparisons. Treatment of different populations under hmmIBD improves detection of IBD across populations. CONCLUSION: Fast and accurate software for detecting IBD in malaria parasite genetic data sampled from one or two populations is presented. The latter will likely be a useful feature for malaria elimination efforts, since it could facilitate identification of imported malaria cases. Software is robust to possible misspecification of the genotyping error and the recombination rate. However, exclusion of data in regions whose rates vary greatly from their genome-wide average is recommended.


Assuntos
Genótipo , Haploidia , Parasitologia/instrumentação , Plasmodium falciparum/genética , Camboja , Gana , Software
13.
J Infect Dis ; 215(4): 631-635, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28039354

RESUMO

We assessed Plasmodium falciparum drug resistance markers in parasites collected in 2012, 2013, and 2015 at 3 sites in Uganda. The prevalence and frequency of parasites with mutations in putative transporters previously associated with resistance to aminoquinolines, but increased sensitivity to lumefantrine (pfcrt 76T; pfmdr1 86Y and 1246Y), decreased markedly at all sites. Antifolate resistance mutations were common, with apparent emergence of mutations (pfdhfr 164L; pfdhps 581G) associated with high-level resistance. K13 mutations linked to artemisinin resistance were uncommon and did not increase over time. Changing malaria treatment practices have been accompanied by profound changes in markers of resistance.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Genes de Protozoários , Plasmodium falciparum/efeitos dos fármacos , Adolescente , Aminoquinolinas/farmacologia , Artemisininas/farmacologia , Estudos Transversais , DNA de Protozoário/isolamento & purificação , Etanolaminas/farmacologia , Feminino , Fluorenos/farmacologia , Antagonistas do Ácido Fólico/farmacologia , Humanos , Lumefantrina , Malária Falciparum/tratamento farmacológico , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Mutação , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Análise de Sequência de DNA , Uganda
15.
Health Promot J Austr ; 26(2): 83-88, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25917272

RESUMO

ISSUES ADDRESSED: It is not known whether individuals can accurately estimate the portion size of foods usually consumed relative to standard serving sizes in national food selection guides. The aim of the present cross-sectional pilot study was to quantify what adults and children deem a typical portion for a variety of foods and compare these with the serving sizes specified in the Australian Guide to Healthy Eating (AGHE). METHODS: Adults and children were independently asked to serve out their typical portion of 10 common foods (rice, pasta, breakfast cereal, chocolate, confectionary, ice cream, meat, vegetables, soft drink and milk). They were also asked to serve what they perceived a small, medium and large portion of each food to be. Each portion was weighed and recorded by an assessor and compared with the standard AGHE serving sizes. RESULTS: Twenty-one individuals (nine mothers, one father, 11 children) participated in the study. There was a large degree of variability in portion sizes measured out by both parents and children, with means exceeding the standard AGHE serving size for all items, except for soft drink and milk, where mean portion sizes were less than the AGHE serving size. The greatest mean overestimations were for pasta (155%; mean 116 g; range 94-139 g) and chocolate (151%; mean 38 g; range 25-50 g), each of which represented approximately 1.5 standard AGHE servings. CONCLUSION: The findings of the present study indicate that there is variability between parents' and children's estimation of typical portion sizes compared with national recommendations. SO WHAT? Dietary interventions to improve individuals' dietary patterns should target education regarding portion size.


Assuntos
Bebidas , Alimentos , Tamanho da Porção , Adulto , Austrália , Criança , Estudos Transversais , Dieta , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto
16.
Malar J ; 13: 102, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24636676

RESUMO

BACKGROUND: Reliable measures of anti-malarial resistance are crucial for malaria control. Resistance is typically a complex trait: multiple mutations in a single parasite (a haplotype or genotype) are necessary for elaboration of the resistant phenotype. The frequency of a genetic motif (proportion of parasite clones in the parasite population that carry a given allele, haplotype or genotype) is a useful measure of resistance. In areas of high endemicity, malaria patients generally harbour multiple parasite clones; they have multiplicities of infection (MOIs) greater than one. However, most standard experimental procedures only allow measurement of marker prevalence (proportion of patient blood samples that test positive for a given mutation or combination of mutations), not frequency. It is misleading to compare marker prevalence between sites that have different mean MOIs; frequencies are required instead. METHODS: A Bayesian statistical model was developed to estimate Plasmodium falciparum genetic motif frequencies from prevalence data collected in the field. To assess model performance and computational speed, a detailed simulation study was implemented. Application of the model was tested using datasets from five sites in Uganda. The datasets included prevalence data on markers of resistance to sulphadoxine-pyrimethamine and an average MOI estimate for each study site. RESULTS: The simulation study revealed that the genetic motif frequencies that were estimated using the model were more accurate and precise than conventional estimates based on direct counting. Importantly, the model did not require measurements of the MOI in each patient; it used the average MOI in the patient population. Furthermore, if a dataset included partially genotyped patient blood samples, the model imputed the data that were missing. Using the model and the Ugandan data, genotype frequencies were estimated and four biologically relevant genotypes were identified. CONCLUSIONS: The model allows fast, accurate, reliable estimation of the frequency of genetic motifs associated with resistance to anti-malarials using prevalence data collected from malaria patients. The model does not require per-patient MOI measurements and can easily analyse data from five markers. The model will be a valuable tool for monitoring markers of anti-malarial drug resistance, including markers of resistance to artemisinin derivatives and partner drugs.


Assuntos
Resistência a Medicamentos , Frequência do Gene , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Genótipo , Haplótipos , Humanos , Malária Falciparum/epidemiologia , Modelos Estatísticos , Plasmodium falciparum/classificação , Plasmodium falciparum/efeitos dos fármacos , Prevalência , Uganda
17.
Nat Commun ; 15(1): 6757, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117628

RESUMO

Challenges in classifying recurrent Plasmodium vivax infections constrain surveillance of antimalarial efficacy and transmission. Recurrent infections may arise from activation of dormant liver stages (relapse), blood-stage treatment failure (recrudescence) or reinfection. Molecular inference of familial relatedness (identity-by-descent or IBD) can help resolve the probable origin of recurrences. As whole genome sequencing of P. vivax remains challenging, targeted genotyping methods are needed for scalability. We describe a P. vivax marker discovery framework to identify and select panels of microhaplotypes (multi-allelic markers within small, amplifiable segments of the genome) that can accurately capture IBD. We evaluate panels of 50-250 microhaplotypes discovered in a global set of 615 P. vivax genomes. A candidate global 100-microhaplotype panel exhibits high marker diversity in the Asia-Pacific, Latin America and horn of Africa (median HE = 0.70-0.81) and identifies 89% of the polyclonal infections detected with genome-wide datasets. Data simulations reveal lower error in estimating pairwise IBD using microhaplotypes relative to traditional biallelic SNP barcodes. The candidate global panel also exhibits high accuracy in predicting geographic origin and captures local infection outbreak and bottlenecking events. Our framework is open-source enabling customised microhaplotype discovery and selection, with potential for porting to other species or data resources.


Assuntos
Malária Vivax , Plasmodium vivax , Recidiva , Plasmodium vivax/genética , Malária Vivax/parasitologia , Malária Vivax/epidemiologia , Humanos , Haplótipos/genética , Polimorfismo de Nucleotídeo Único , Genoma de Protozoário/genética , Genótipo
18.
Trends Parasitol ; 39(1): 17-25, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36435688

RESUMO

Genomic epidemiology has guided research and policy for various viral pathogens and there has been a parallel effort towards using genomic epidemiology to combat diseases that are caused by eukaryotic pathogens, such as the malaria parasite. However, the central concept of viral genomic epidemiology, namely that of measurably mutating pathogens, does not apply easily to sexually recombining parasites. Here we introduce the related but different concept of measurably recombining malaria parasites to promote convergence around a unifying theoretical framework for malaria genomic epidemiology. Akin to viral phylodynamics, we anticipate that an inferential framework developed around recombination will help guide practical research and thus realize the full public health potential of genomic epidemiology for malaria parasites and other sexually recombining pathogens.


Assuntos
Malária , Parasitos , Animais , Humanos , Malária/epidemiologia , Malária/prevenção & controle , Genômica , Eucariotos
19.
J Feline Med Surg ; 25(9): 1098612X231194460, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37732386

RESUMO

OBJECTIVES: Feline infectious peritonitis (FIP) is a serious disease that arises due to feline coronavirus infection. The nucleoside analogues remdesivir and GS-441524 can be effective in its treatment, but most studies have used unregulated products of unknown composition. The aim of the present study was to describe the treatment of FIP using legally sourced veterinary-prescribed regulated veterinary compounded products containing known amounts of remdesivir (injectable) or GS-441524 (oral tablets). METHODS: Cats were recruited via email advice services, product sales contacts and study publicity. Cats were excluded if they were deemed unlikely to have FIP, were not treated exclusively with the veterinary compounded products, or if there was a lack of cat and/or treatment (including response) data. Extensive cat and treatment data were collected. RESULTS: Among the 307 cats recruited, the predominant type of FIP was most commonly abdominal effusive (49.5%) and then neurological (14.3%). Three treatment protocols were used; remdesivir alone (33.9%), remdesivir followed by GS-441524 (55.7%) and GS-441524 alone (10.4%). The median (range) initial treatment period duration and longest follow-up time point after starting treatment were 84 (1-330) days and 248 (1-814) days, respectively. The most common side effect was injection pain (in 47.8% of those given subcutaneous remdesivir). Of the 307 cats, 33 (10.8%) relapsed, 15 (45.5%) during and 18 (54.5%) after the initial treatment period. At the longest follow-up time point after completion of the initial treatment period, 84.4% of cats were alive. The cats achieving a complete response within 30 days of starting treatment were significantly more likely to be alive at the end of the initial treatment period than those cats that did not. CONCLUSIONS AND RELEVANCE: Legally sourced remdesivir and GS-441524 products, either alone or used sequentially, were very effective in the treatment of FIP in this group of cats. Variable protocols precluded statistical comparison of treatment regimens.


Assuntos
Doenças do Gato , Infecções por Coronavirus , Peritonite Infecciosa Felina , Gatos , Animais , Estudos Retrospectivos , Peritonite Infecciosa Felina/tratamento farmacológico , Infecções por Coronavirus/veterinária , Doenças do Gato/tratamento farmacológico
20.
medRxiv ; 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36993192

RESUMO

Challenges in understanding the origin of recurrent Plasmodium vivax infections constrains the surveillance of antimalarial efficacy and transmission of this neglected parasite. Recurrent infections within an individual may arise from activation of dormant liver stages (relapse), blood-stage treatment failure (recrudescence) or new inoculations (reinfection). Molecular inference of familial relatedness (identity-by-descent or IBD) based on whole genome sequence data, together with analysis of the intervals between parasitaemic episodes ("time-to-event" analysis), can help resolve the probable origin of recurrences. Whole genome sequencing of predominantly low-density P. vivax infections is challenging, so an accurate and scalable genotyping method to determine the origins of recurrent parasitaemia would be of significant benefit. We have developed a P. vivax genome-wide informatics pipeline to select specific microhaplotype panels that can capture IBD within small, amplifiable segments of the genome. Using a global set of 615 P. vivax genomes, we derived a panel of 100 microhaplotypes, each comprising 3-10 high frequency SNPs within <200 bp sequence windows. This panel exhibits high diversity in regions of the Asia-Pacific, Latin America and the horn of Africa (median HE = 0.70-0.81) and it captured 89% (273/307) of the polyclonal infections detected with genome-wide datasets. Using data simulations, we demonstrate lower error in estimating pairwise IBD using microhaplotypes, relative to traditional biallelic SNP barcodes. Our panel exhibited high accuracy in predicting the country of origin (median Matthew's correlation coefficient >0.9 in 90% countries tested) and it also captured local infection outbreak and bottlenecking events. The informatics pipeline is available open-source and yields microhaplotypes that can be readily transferred to high-throughput amplicon sequencing assays for surveillance in malaria-endemic regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA