Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39147588

RESUMO

Circadian, infradian, and seasonal changes in steroid hormone secretion have been tied to changes in brain volume in several mammalian species. However, the relationship between circadian changes in steroid hormone production and rhythmic changes in brain morphology in humans is largely unknown. Here, we examined the relationship between diurnal fluctuations in steroid hormones and multiscale brain morphology in a precision imaging study of a male who completed forty MRI and serological assessments at 7 A.M. and 8 P.M. over the course of a month, targeting hormone concentrations at their peak and nadir. Diurnal fluctuations in steroid hormones were tied to pronounced changes in global and regional brain morphology. From morning to evening, total brain volume, gray matter volume, and cortical thickness decreased, coincident with decreases in steroid hormone concentrations (testosterone, estradiol, and cortisol). In parallel, cerebrospinal fluid and ventricle size increased from A.M. to P.M. Global changes were driven by decreases within the occipital and parietal cortices. These findings highlight natural rhythms in brain morphology that keep time with the diurnal ebb and flow of steroid hormones.Significance Statement Though rhythmic changes in steroid hormone secretion have been tied to changes in brain volume in several mammalian species, this relationship has not been well-characterized in humans. In this precision neuroimaging study, we found that global and regional brain morphology and steroid hormone levels exhibit tandem circadian rhythms. These findings provide high-resolution insight into the anatomical signature of diurnal changes in brain morphology and steroid hormone production in a human male and reveal the metronomic regularity of these rhythms over time.

2.
bioRxiv ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38645226

RESUMO

Circadian, infradian, and seasonal changes in steroid hormone secretion have been tied to changes in brain volume in several mammalian species. However, the relationship between circadian changes in steroid hormone production and rhythmic changes in brain morphology in humans is largely unknown. Here, we examined the relationship between diurnal fluctuations in steroid hormones and multiscale brain morphology in a precision imaging study of a male who completed forty MRI and serological assessments at 7 A.M. and 8 P.M. over the course of a month, targeting hormone concentrations at their peak and nadir. Diurnal fluctuations in steroid hormones were tied to pronounced changes in global and regional brain morphology. From morning to evening, total brain volume, gray matter volume, and cortical thickness decreased, coincident with decreases in steroid hormone concentrations (testosterone, estradiol, and cortisol). In parallel, cerebrospinal fluid and ventricle size increased from A.M. to P.M. Global changes were driven by decreases within the occipital and parietal cortices. These findings highlight natural rhythms in brain morphology that keep time with the diurnal ebb and flow of steroid hormones.

3.
bioRxiv ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38854103

RESUMO

Microtubules (MTs) are intrinsically dynamic polymers. In neurons, staggered individual microtubules form stable, polarized acentrosomal MT arrays spanning the axon and dendrite to support long-distance intracellular transport. How the stability and polarity of these arrays are maintained when individual MTs remain highly dynamic is still an open question. Here we visualize MT arrays in vivo in C. elegans neurons with single microtubule resolution. We find that the CRMP family homolog, UNC-33, is essential for the stability and polarity of MT arrays in neurites. In unc-33 mutants, MTs exhibit dramatically reduced rescue after catastrophe, develop gaps in coverage, and lose their polarity, leading to trafficking defects. UNC-33 is stably anchored on the cortical cytoskeleton and forms patch-like structures along the dendritic shaft. These discrete and stable UNC-33 patches concentrate free tubulins and correlate with MT rescue sites. In vitro , purified UNC-33 preferentially associates with MT tips and increases MT rescue frequency. Together, we propose that UNC-33 functions as a microtubule-associated protein (MAP) to promote individual MT rescue locally. Through this activity, UNC-33 prevents the loss of individual MTs, thereby maintaining the coverage and polarity of MT arrays throughout the lifetime of neurons.

4.
bioRxiv ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38168195

RESUMO

Pregnancy is a period of profound hormonal and physiological change experienced by millions of women annually, yet the neural changes unfolding in the maternal brain throughout gestation have not been studied in humans. Leveraging precision imaging, we mapped neuroanatomical changes in an individual from preconception through two years postpartum. Pronounced decreases in gray matter volume and cortical thickness were evident across the brain, which stand in contrast to increases in white matter microstructural integrity, ventricle volume, and cerebrospinal fluid, with few regions untouched by the transition to motherhood. This dataset serves as the first comprehensive map of the human brain across gestation, providing an open-access resource for the brain imaging community to stimulate further exploration and discovery.

5.
bioRxiv ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38766073

RESUMO

Stereotyped dendritic arbors are shaped by dynamic and stochastic growth during neuronal development. It remains unclear how guidance receptors and ligands coordinate branch dynamic growth, retraction, and stabilization to specify dendritic arbors. We previously showed that extracellular ligand SAX-7/LICAM dictates the shape of the PVD sensory neuron via binding to the dendritic guidance receptor DMA-1, a single transmembrane adhesion molecule. Here, we perform structure-function analyses of DMA-1 and unexpectedly find that robust, stochastic dendritic growth does not require ligand-binding. Instead, ligand-binding inhibits growth, prevents retraction, and specifies arbor shape. Furthermore, we demonstrate that dendritic growth requires a pool of ligand-free DMA-1, which is maintained by receptor endocytosis and reinsertion to the plasma membrane via recycling endosomes. Mutants defective of DMA-1 endocytosis show severely truncated dendritic arbors. We present a model in which ligand-free guidance receptor mediates intrinsic, stochastic dendritic growth, while extracellular ligands instruct dendrite shape by inhibiting growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA