RESUMO
Coronavirus disease 2019 (COVID-19) has caused the ongoing COVID-19 pandemic and there is a growing demand for safe and effective vaccines. The thermophilic Thermothelomyces heterothallica filamentous fungal host, C1-cell, can be utilized as an expression platform for the rapid production of large quantities of antigens for developing vaccines. The aim of this study was to evaluate the local tolerance and the systemic toxicity of a C1-cell expressed receptor-binding domain (C1-RBD) vaccine, following repeated weekly intramuscular injections (total of 4 administrations), in New Zealand White rabbits. The animals were sacrificed either 3 days or 3 weeks following the last dose. No signs of toxicity were observed, including no injection site reactions. ELISA studies revealed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific immunoglobulin G antibodies in the sera of C1-RBD-treated animals starting from day 13 post injection, that were further elevated. Histopathology evaluation and immunohistochemical staining revealed follicular hyperplasia, consisting of B-cell type, in the spleen and inguinal lymph nodes of the treated animals that were sustained throughout the recovery phase. No local or systemic toxicity was observed. In conclusion, the SARS-CoV-2 C1-RBD vaccine candidate demonstrated an excellent safety profile and a lasting immunogenic response against receptor-binding domain, thus supporting its further development for use in humans.
Assuntos
COVID-19 , SARS-CoV-2 , Animais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Pandemias/prevenção & controle , Coelhos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismoRESUMO
Subunit vaccines based on the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 provide one of the most promising strategies to fight the COVID-19 pandemic. The detailed characterization of the protein primary structure by mass spectrometry (MS) is mandatory, as described in ICHQ6B guidelines. In this work, several recombinant RBD proteins produced in five expression systems were characterized using a non-conventional protocol known as in-solution buffer-free digestion (BFD). In a single ESI-MS spectrum, BFD allowed very high sequence coverage (≥ 99%) and the detection of highly hydrophilic regions, including very short and hydrophilic peptides (2-8 amino acids), and the His6-tagged C-terminal peptide carrying several post-translational modifications at Cys538 such as cysteinylation, homocysteinylation, glutathionylation, truncated glutathionylation, and cyanylation, among others. The analysis using the conventional digestion protocol allowed lower sequence coverage (80-90%) and did not detect peptides carrying most of the above-mentioned PTMs. The two C-terminal peptides of a dimer [RBD(319-541)-(His)6]2 linked by an intermolecular disulfide bond (Cys538-Cys538) with twelve histidine residues were only detected by BFD. This protocol allows the detection of the four disulfide bonds present in the native RBD, low-abundance scrambling variants, free cysteine residues, O-glycoforms, and incomplete processing of the N-terminal end, if present. Artifacts generated by the in-solution BFD protocol were also characterized. BFD can be easily implemented; it has been applied to the characterization of the active pharmaceutical ingredient of two RBD-based vaccines, and we foresee that it can be also helpful to the characterization of mutated RBDs.
Assuntos
Cisteína/metabolismo , Fragmentos de Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Espectrometria de Massas por Ionização por Electrospray/métodos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Sequência de Aminoácidos , Cisteína/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Fragmentos de Peptídeos/química , Ligação Proteica , Domínios Proteicos , Subunidades ProteicasRESUMO
The Zoonoses Anticipation and Preparedness Initiative (ZAPI) was set up to prepare for future outbreaks and to develop and implement new technologies to accelerate development and manufacturing of vaccines and monoclonal antibodies. To be able to achieve surge capacity, an easy deployment and production at multiple sites is needed. This requires a straightforward manufacturing system with a limited number of steps in upstream and downstream processes, a minimum number of in vitro Quality Control assays, and robust and consistent platforms. Three viruses were selected as prototypes: Middle East Respiratory Syndrome (MERS) coronavirus, Rift Valley fever virus, and Schmallenberg virus. Selected antibodies against the viral surface antigens were manufactured by transient gene expression in Chinese Hamster Ovary (CHO) cells, scaling up to 200 L. For vaccine production, viral antigens were fused to multimeric protein scaffold particles using the SpyCatcher/SpyTag system. In vivo models demonstrated the efficacy of both antibodies and vaccines. The final step in speeding up vaccine (and antibody) development is the regulatory appraisal of new platform technologies. Towards this end, within ZAPI, a Platform Master File (PfMF) was developed, as part of a licensing dossier, to facilitate and accelerate the scientific assessment by avoiding repeated discussion of already accepted platforms. The veterinary PfMF was accepted, whereas the human PfMF is currently under review by the European Medicines Agency, aiming for publication of the guideline by January 2022.
Assuntos
Infecções por Coronavirus , Vacinas Virais , Zoonoses , Animais , Anticorpos Antivirais , Antígenos Virais , Células CHO , Congressos como Assunto , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Cricetinae , Cricetulus , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio , Vírus da Febre do Vale do Rift , Zoonoses/prevenção & controleRESUMO
Monoclonal antibodies are an increasingly important tool for prophylaxis and treatment of acute virus infections like SARS-CoV-2 infection. However, their use is often restricted due to the time required for development, variable yields and high production costs, as well as the need for adaptation to newly emerging virus variants. Here we use the genetically modified filamentous fungus expression system Thermothelomyces heterothallica (C1), which has a naturally high biosynthesis capacity for secretory enzymes and other proteins, to produce a human monoclonal IgG1 antibody (HuMab 87G7) that neutralises the SARS-CoV-2 variants of concern (VOCs) Alpha, Beta, Gamma, Delta, and Omicron. Both the mammalian cell and C1 produced HuMab 87G7 broadly neutralise SARS-CoV-2 VOCs in vitro and also provide protection against VOC Omicron in hamsters. The C1 produced HuMab 87G7 is also able to protect against the Delta VOC in non-human primates. In summary, these findings show that the C1 expression system is a promising technology platform for the development of HuMabs in preventive and therapeutic medicine.
Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Humanos , SARS-CoV-2/genética , COVID-19/prevenção & controle , Primatas , Imunoglobulina G , Anticorpos Monoclonais , Fungos , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus , Anticorpos Antivirais , MamíferosRESUMO
Introduction: The emergency use of vaccines has been the most efficient way to control the coronavirus disease 19 (COVID-19) pandemic. However, the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern has reduced the efficacy of currently used vaccines. The receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein is the main target for virus neutralizing (VN) antibodies. Methods: A SARS-CoV-2 RBD vaccine candidate was produced in the Thermothelomyces heterothallica (formerly, Myceliophthora thermophila) C1 protein expression system and coupled to a nanoparticle. Immunogenicity and efficacy of this vaccine candidate was tested using the Syrian golden hamster (Mesocricetus auratus) infection model. Results: One dose of 10-µg RBD vaccine based on SARS-CoV-2 Wuhan strain, coupled to a nanoparticle in combination with aluminum hydroxide as adjuvant, efficiently induced VN antibodies and reduced viral load and lung damage upon SARS-CoV-2 challenge infection. The VN antibodies neutralized SARS-CoV-2 variants of concern: D614G, Alpha, Beta, Gamma, and Delta. Discussion: Our results support the use of the Thermothelomyces heterothallica C1 protein expression system to produce recombinant vaccines against SARS-CoV-2 and other virus infections to help overcome limitations associated with the use of mammalian expression system.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Cricetinae , Humanos , COVID-19/prevenção & controle , SARS-CoV-2/genética , Adjuvantes Imunológicos , Anticorpos Bloqueadores , Fungos , MesocricetusRESUMO
Since the beginning of the COVID-19 pandemic, the development of effective vaccines against this pathogen has been a priority for the scientific community. Several strategies have been developed including vaccines based on recombinant viral protein fragments. The receptor-binding domain (RBD) in the S1 subunit of S protein has been considered one of the main targets of neutralizing antibodies. In this study we assess the potential of a vaccine formulation based on the recombinant RBD domain of SARS-CoV-2 expressed in the thermophilic filamentous fungal strain Thermothelomyces heterothallica and the hepatitis B virus (HBV) core protein. Functional humoral and cellular immune responses were detected in mice. To our knowledge, this is the first report on the immune evaluation of a biomedical product obtained in the fungal strain T. heterothallica. These results together with the intrinsic advantages of this expression platform support its use for the development of biotechnology products for medical purpose.
Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , Humanos , Imunidade Celular , Camundongos , Camundongos Endogâmicos BALB C , Pandemias , SARS-CoV-2RESUMO
(1) Influenza viruses constantly change and evade prior immune responses, forcing seasonal re-vaccinations with updated vaccines. Current FDA-approved vaccine manufacturing technologies are too slow and/or expensive to quickly adapt to mid-season changes in the virus or to the emergence of pandemic strains. Therefore, cost-effective vaccine technologies that can quickly adapt to newly emerged strains are desirable. (2) The filamentous fungal host Thermothelomyces heterothallica C1 (C1, formerly Myceliophthora thermophila) offers a highly efficient and cost-effective alternative to reliably produce immunogens of vaccine quality at large scale. (3) We showed the utility of the C1 system expressing hemagglutinin (HA) and a HA fusion protein from different H1N1 influenza A virus strains. Mice vaccinated with the C1-derived HA proteins elicited anti-HA immune responses similar, or stronger than mice vaccinated with HA products derived from prototypical expression systems. A challenge study demonstrated that vaccinated mice were protected against the aggressive homologous viral challenge. (4) The C1 expression system is proposed as part of a set of protein expression systems for plug-and-play vaccine manufacturing platforms. Upon the emergence of pathogens of concern these platforms could serve as a quick solution for producing enough vaccines for immunizing the world population in a much shorter time and more affordably than is possible with current platforms.
RESUMO
SARS-CoV-2 is evolving with increased transmission, host range, pathogenicity, and virulence. The original and mutant viruses escape host innate (Interferon) immunity and adaptive (Antibody) immunity, emphasizing unmet needs for high-yield, commercial-scale manufacturing to produce inexpensive vaccines/boosters for global/equitable distribution. We developed DYAI-100A85, a SARS-CoV-2 spike receptor binding domain (RBD) subunit antigen vaccine expressed in genetically modified thermophilic filamentous fungus, Thermothelomyces heterothallica C1, and secreted at high levels into fermentation medium. The RBD-C-tag antigen strongly binds ACE2 receptors in vitro. Alhydrogel®'85'-adjuvanted RDB-C-tag-based vaccine candidate (DYAI-100A85) demonstrates strong immunogenicity, and antiviral efficacy, including in vivo protection against lethal intranasal SARS-CoV-2 (D614G) challenge in human ACE2-transgenic mice. No loss of body weight or adverse events occurred. DYAI-100A85 also demonstrates excellent safety profile in repeat-dose GLP toxicity study. In summary, subcutaneous prime/boost DYAI-100A85 inoculation induces high titers of RBD-specific neutralizing antibodies and protection of hACE2-transgenic mice against lethal challenge with SARS-CoV-2. Given its demonstrated safety, efficacy, and low production cost, vaccine candidate DYAI-100 received regulatory approval to initiate a Phase 1 clinical trial to demonstrate its safety and efficacy in humans.
RESUMO
Emerging infectious diseases represent an increasing threat to human and animal health. Therefore, safe and effective vaccines that could be available within a short time frame after an outbreak are required for adequate prevention and control. Here, we developed a robust and versatile self-assembling multimeric protein scaffold particle (MPSP) vaccine platform using lumazine synthase (LS) from Aquifex aeolicus. This scaffold allowed the presentation of peptide epitopes by genetic fusion as well as the presentation of large antigens by bacterial superglue-based conjugation to the pre-assembled particle. Using the orthobunyavirus model Schmallenberg virus (SBV) we designed MPSPs presenting major immunogens of SBV and assessed their efficacy in a mouse model as well as in cattle, a target species of SBV. All prototype vaccines conferred protection from viral challenge infection and the multivalent presentation of the selected antigens on the MPSP markedly improved their immunogenicity compared to the monomeric subunits. Even a single shot vaccination protected about 80% of mice from an otherwise lethal dose of SBV. Most importantly, the MPSPs induced a virtually sterile immunity in cattle. Altogether, LS represents a promising platform for modular and rapid vaccine design.