Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Rev Mol Cell Biol ; 22(5): 304, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33568798
2.
Plant Physiol ; 195(2): 1475-1490, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38324704

RESUMO

Measurements of respiratory properties have often been made at a single time point either during daytime using dark-adapted leaves or during nighttime. The influence of the day-night cycle on respiratory metabolism has received less attention but is crucial to understand photosynthesis and photorespiration. Here, we examined how CO2- and O2-based rates of leaf dark respiration (Rdark) differed between midday (after 30-min dark adaptation) and midnight in 8 C3 and C4 grasses. We used these data to calculate the respiratory quotient (RQ; ratio of CO2 release to O2 uptake), and assessed relationships between Rdark and leaf metabolome. Rdark was higher at midday than midnight, especially in C4 species. The day-night difference in Rdark was more evident when expressed on a CO2 than O2 basis, with the RQ being higher at midday than midnight in all species, except in rice (Oryza sativa). Metabolomic analyses showed little correlation of Rdark or RQ with leaf carbohydrates (sucrose, glucose, fructose, or starch) but strong multivariate relationships with other metabolites. The results suggest that rates of Rdark and differences in RQ were determined by several concurrent CO2-producing and O2-consuming metabolic pathways, not only the tricarboxylic acid cycle (organic acids utilization) but also the pentose phosphate pathway, galactose metabolism, and secondary metabolism. As such, Rdark was time-, type- (C3/C4) and species-dependent, due to the use of different substrates.


Assuntos
Dióxido de Carbono , Respiração Celular , Folhas de Planta , Poaceae , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Poaceae/fisiologia , Poaceae/metabolismo , Dióxido de Carbono/metabolismo , Fotossíntese , Escuridão , Oxigênio/metabolismo , Metaboloma
3.
New Phytol ; 241(4): 1435-1446, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37997699

RESUMO

Our ability to predict temperature responses of leaf respiration in light and darkness (RL and RDk ) is essential to models of global carbon dynamics. While many models rely on constant thermal sensitivity (characterized by Q10 ), uncertainty remains as to whether Q10 of RL and RDk are actually similar. We measured short-term temperature responses of RL and RDk in immature and mature leaves of two evergreen tree species, Castanopsis carlesii and Ormosia henry in an open field. RL was estimated by the Kok method, the Yin method and a newly developed Kok-iterCc method. When estimated by the Yin and Kok-iterCc methods, RL and RDk had similar Q10 (c. 2.5). The Kok method overestimated both Q10 and the light inhibition of respiration. RL /RDk was not affected by leaf temperature. Acclimation of respiration in summer was associated with a decline in basal respiration but not in Q10 in both species, which was related to changes in leaf nitrogen content between seasons. Q10 of RL and RDk in mature leaves were 40% higher than in immature leaves. Our results suggest similar Q10 values can be used to model RL and RDk while leaf development-associated changes in Q10 require special consideration in future respiration models.


Assuntos
Fotossíntese , Respiração , Temperatura , Escuridão , Estações do Ano , Folhas de Planta
4.
Plant Physiol ; 191(4): 2204-2217, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36517877

RESUMO

Evaluating leaf day respiration rate (RL), which is believed to differ from that in the dark (RDk), is essential for predicting global carbon cycles under climate change. Several studies have suggested that atmospheric CO2 impacts RL. However, the magnitude of such an impact and associated mechanisms remain uncertain. To explore the CO2 effect on RL, wheat (Triticum aestivum) and sunflower (Helianthus annuus) plants were grown under ambient (410 ppm) and elevated (820 ppm) CO2 mole fraction ([CO2]). RL was estimated from combined gas exchange and chlorophyll fluorescence measurements using the Kok method, the Kok-Phi method, and a revised Kok method (Kok-Cc method). We found that elevated growth [CO2] led to an 8.4% reduction in RL and a 16.2% reduction in RDk in both species, in parallel to decreased leaf N and chlorophyll contents at elevated growth [CO2]. We also looked at short-term CO2 effects during gas exchange experiments. Increased RL or RL/RDk at elevated measurement [CO2] were found using the Kok and Kok-Phi methods, but not with the Kok-Cc method. This discrepancy was attributed to the unaccounted changes in Cc in the former methods. We found that the Kok and Kok-Phi methods underestimate RL and overestimate the inhibition of respiration under low irradiance conditions of the Kok curve, and the inhibition of RL was only 6%, representing 26% of the apparent Kok effect. We found no significant long-term CO2 effect on RL/RDk, originating from a concurrent reduction in RL and RDk at elevated growth [CO2], and likely mediated by acclimation of nitrogen metabolism.


Assuntos
Dióxido de Carbono , Fotossíntese , Fotossíntese/fisiologia , Dióxido de Carbono/metabolismo , Folhas de Planta/metabolismo , Clorofila/metabolismo , Respiração
5.
Plant Cell Environ ; 47(5): 1503-1512, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38251436

RESUMO

d-amino acids are the d stereoisomers of the common l-amino acids found in proteins. Over the past two decades, the occurrence of d-amino acids in plants has been reported and circumstantial evidence for a role in various processes, including interaction with soil microorganisms or interference with cellular signalling, has been provided. However, examples are not numerous and d-amino acids can also be detrimental, some of them inhibiting growth and development. Thus, the persistence of d-amino acid metabolism in plants is rather surprising, and the evolutionary origins of d-amino acid metabolism are currently unclear. Systemic analysis of sequences associated with d-amino acid metabolism enzymes shows that they are not simply inherited from cyanobacterial metabolism. In fact, the history of plant d-amino acid metabolism enzymes likely involves multiple steps, cellular compartments, gene transfers and losses. Regardless of evolutionary steps, enzymes of d-amino acid metabolism, such as d-amino acid transferases or racemases, have been retained by higher plants and have not simply been eliminated, so it is likely that they fulfil important metabolic roles such as serine, folate or plastid peptidoglycan metabolism. We suggest that d-amino acid metabolism may have been critical to support metabolic functions required during the evolution of land plants.


Assuntos
Isomerases de Aminoácido , Embriófitas , Isomerases de Aminoácido/química , Isomerases de Aminoácido/genética , Isomerases de Aminoácido/metabolismo , Aminoácidos/metabolismo , Plantas/metabolismo , Embriófitas/metabolismo , Bactérias/metabolismo
6.
Plant Cell Environ ; 47(6): 2146-2162, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38444114

RESUMO

Day respiration (Rd) is the metabolic, nonphotorespiratory process by which illuminated leaves liberate CO2 during photosynthesis. Rd is used routinely in photosynthetic models and is thus critical for calculations. However, metabolic details associated with Rd are poorly known, and this can be problematic to predict how Rd changes with environmental conditions and relates to night respiration. It is often assumed that day respiratory CO2 release just reflects 'ordinary' catabolism (glycolysis and Krebs 'cycle'). Here, we carried out a pulse-chase experiment, whereby a 13CO2 pulse in the light was followed by a chase period in darkness and then in the light. We took advantage of nontargeted, isotope-assisted metabolomics to determine non-'ordinary' metabolism, detect carbon remobilisation and compare light and dark 13C utilisation. We found that several concurrent metabolic pathways ('ordinary' catabolism, oxidative pentose phosphates pathway, amino acid production, nucleotide biosynthesis and secondary metabolism) took place in the light and participated in net CO2 efflux associated with day respiration. Flux reconstruction from metabolomics leads to an underestimation of Rd, further suggesting the contribution of a variety of CO2-evolving processes. Also, the cornerstone of the Krebs 'cycle', citrate, is synthetised de novo from photosynthates mostly in darkness, and remobilised or synthesised from stored material in the light. Collectively, our data provides direct evidence that leaf day respiration (i) involves several CO2-producing reactions and (ii) is fed by different carbon sources, including stored carbon disconnected from current photosynthates.


Assuntos
Dióxido de Carbono , Carbono , Respiração Celular , Escuridão , Fotossíntese , Folhas de Planta , Folhas de Planta/metabolismo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Luz , Isótopos de Carbono , Metabolômica
7.
Plant Cell Environ ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39248643

RESUMO

Traditional leaf gas exchange experiments have focused on net CO2 exchange (Anet). Here, using California poplar (Populus trichocarpa), we coupled measurements of net oxygen production (NOP), isoprene emissions and δ18O in O2 to traditional CO2/H2O gas exchange with chlorophyll fluorescence, and measured light, CO2 and temperature response curves. This allowed us to obtain a comprehensive picture of the photosynthetic redox budget including electron transport rate (ETR) and estimates of the mean assimilatory quotient (AQ = Anet/NOP). We found that Anet and NOP were linearly correlated across environmental gradients with similar observed AQ values during light (1.25 ± 0.05) and CO2 responses (1.23 ± 0.07). In contrast, AQ was suppressed during leaf temperature responses in the light (0.87 ± 0.28), potentially due to the acceleration of alternative ETR sinks like lipid synthesis. Anet and NOP had an optimum temperature (Topt) of 31°C, while ETR and δ18O in O2 (35°C) and isoprene emissions (39°C) had distinctly higher Topt. The results confirm a tight connection between water oxidation and ETR and support a view of light-dependent lipid synthesis primarily driven by photosynthetic ATP/NADPH not consumed by the Calvin-Benson cycle, as an important thermotolerance mechanism linked with high rates of (photo)respiration and CO2/O2 recycling.

8.
Plant Cell Environ ; 47(9): 3590-3604, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39031544

RESUMO

The response of mesophyll conductance (gm) to CO2 plays a key role in photosynthesis and ecosystem carbon cycles under climate change. Despite numerous studies, there is still debate about how gm responds to short-term CO2 variations. Here we used multiple methods and looked at the relationship between stomatal conductance to CO2 (gsc) and gm to address this aspect. We measured chlorophyll fluorescence parameters and online carbon isotope discrimination (Δ) at different CO2 mole fractions in sunflower (Helianthus annuus L.), cowpea (Vigna unguiculata L.), and wheat (Triticum aestivum L.) leaves. The variable J and Δ based methods showed that gm decreased with an increase in CO2 mole fraction, and so did stomatal conductance. There were linear relationships between gm and gsc across CO2 mole fractions. gm obtained from A-Ci curve fitting method was higher than that from the variable J method and was not representative of gm under the growth CO2 concentration. gm could be estimated by empirical models analogous to the Ball-Berry model and the USO model for stomatal conductance. Our results suggest that gm and gsc respond in a coordinated manner to short-term variations in CO2, providing new insight into the role of gm in photosynthesis modelling.


Assuntos
Dióxido de Carbono , Helianthus , Células do Mesofilo , Estômatos de Plantas , Triticum , Dióxido de Carbono/metabolismo , Estômatos de Plantas/fisiologia , Células do Mesofilo/fisiologia , Células do Mesofilo/metabolismo , Triticum/fisiologia , Triticum/metabolismo , Helianthus/fisiologia , Helianthus/metabolismo , Isótopos de Carbono , Fotossíntese/fisiologia , Fabaceae/fisiologia , Clorofila/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo
9.
Plant Cell Environ ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39219416

RESUMO

Nitrogen (N) nutrition impacts on primary carbon metabolism and can lead to changes in δ13C of respired CO2. However, uncertainty remains as to whether (1) the effect of N nutrition is observed in all species, (2) N source also impacts on respired CO2 in roots and (3) a metabolic model can be constructed to predict δ13C of respired CO2 under different N sources. Here, we carried out isotopic measurements of respired CO2 and various metabolites using two species (spinach, French bean) grown under different NH4 +:NO3 - ratios. Both species showed a similar pattern, with a progressive 13C-depletion in leaf-respired CO2 as the ammonium proportion increased, while δ13C in root-respired CO2 showed little change. Supervised multivariate analysis showed that δ13C of respired CO2 was mostly determined by organic acid (malate, citrate) metabolism, in both leaves and roots. We then took advantage of nonstationary, two-pool modelling that explained 73% of variance in δ13C in respired CO2. It demonstrates the critical role of the balance between the utilisation of respiratory intermediates and the remobilisation of stored organic acids, regardless of anaplerotic bicarbonate fixation by phosphoenolpyruvate carboxylase and the organ considered.

10.
J Exp Bot ; 75(5): 1451-1464, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37943576

RESUMO

The 13C isotope composition (δ13C) of leaf dry matter is a useful tool for physiological and ecological studies. However, how post-photosynthetic fractionation associated with respiration and carbon export influences δ13C remains uncertain. We investigated the effects of post-photosynthetic fractionation on δ13C of mature leaves of Cleistogenes squarrosa, a perennial C4 grass, in controlled experiments with different levels of vapour pressure deficit and nitrogen supply. With increasing leaf age class, the 12C/13C fractionation of leaf organic matter relative to the δ13C of atmosphere CO2 (ΔDM) increased while that of cellulose (Δcel) was almost constant. The divergence between ΔDM and Δcel increased with leaf age class, with a maximum value of 1.6‰, indicating the accumulation of post-photosynthetic fractionation. Applying a new mass balance model that accounts for respiration and export of photosynthates, we found an apparent 12C/13C fractionation associated with carbon export of -0.5‰ to -1.0‰. Different ΔDM among leaves, pseudostems, daughter tillers, and roots indicate that post-photosynthetic fractionation happens at the whole-plant level. Compared with ΔDM of old leaves, ΔDM of young leaves and Δcel are more reliable proxies for predicting physiological parameters due to the lower sensitivity to post-photosynthetic fractionation and the similar sensitivity in responses to environmental changes.


Assuntos
Celulose , Poaceae , Poaceae/metabolismo , Celulose/metabolismo , Isótopos de Carbono , Fotossíntese/fisiologia , Carbono , Folhas de Planta/metabolismo , Dióxido de Carbono
11.
Anal Chem ; 95(28): 10540-10549, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37413690

RESUMO

Quantitative nuclear magnetic resonance (NMR) for isotopic measurements, known as irm-NMR (isotope ratio measured by NMR), is well suited for the quantitation of 13C-isotopomers in position-specific isotope analysis and thus for measuring the carbon isotope composition (δ13C, mUr) in C-atom positions. Irm-NMR has already been used with glucose after derivatization to study sugar metabolism in plants. However, up to now, irm-NMR has exploited a "single-pulse" sequence and requires a relatively large amount of material and long experimental time, precluding many applications with biological tissues or extracts. To reduce the required amount of sample, we investigated the use of 2D-NMR analysis. We adapted and optimized the NMR sequence so as to be able to analyze a small amount (10 mg) of a glucose derivative (diacetonide glucofuranose, DAGF) with a precision better than 1 mUr at each C-atom position. We also set up a method to correct raw data and express 13C abundance on the usual δ13C scale (δ-scale). In fact, due to the distortion associated with polarization transfer and spin manipulation during 2D-NMR analyses, raw 13C abundance is found to be on an unusual scale. This was compensated for by a correction factor obtained via comparative analysis of a reference material (commercial DAGF) using both previous (single-pulse) and new (2D) sequences. Glucose from different biological origins (CO2 assimilation metabolisms of plants, namely, C3, C4, and CAM) was analyzed with the two sequences and compared. Validation criteria such as selectivity, limit of quantification, precision, trueness, and robustness are discussed, including in the framework of green analytical chemistry.


Assuntos
Espectroscopia de Ressonância Magnética , Glucose/química , Espectroscopia de Ressonância Magnética/métodos , Isótopos de Carbono
12.
New Phytol ; 240(5): 1758-1773, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37680025

RESUMO

Oxygen and hydrogen isotopes of cellulose in plant biology are commonly used to infer environmental conditions, often from time series measurements of tree rings. However, the covariation (or the lack thereof) between δ18 O and δ2 H in plant cellulose is still poorly understood. We compared plant water, and leaf and branch cellulose from dominant tree species across an aridity gradient in Northern Australia, to examine how δ18 O and δ2 H relate to each other and to mean annual precipitation (MAP). We identified a decline in covariation from xylem to leaf water, and onwards from leaf to branch wood cellulose. Covariation in leaf water isotopic enrichment (Δ) was partially preserved in leaf cellulose but not branch wood cellulose. Furthermore, whilst δ2 H was well-correlated between leaf and branch, there was an offset in δ18 O between organs that increased with decreasing MAP. Our findings strongly suggest that postphotosynthetic isotope exchange with water is more apparent for oxygen isotopes, whereas variable kinetic and nonequilibrium isotope effects add complexity to interpreting metabolic-induced δ2 H patterns. Varying oxygen isotope exchange in wood and leaf cellulose must be accounted for when δ18 O is used to reconstruct climatic scenarios. Conversely, comparing δ2 H and δ18 O patterns may reveal environmentally induced shifts in metabolism.


Assuntos
Celulose , Oxigênio , Oxigênio/metabolismo , Celulose/metabolismo , Madeira/metabolismo , Isótopos de Carbono/metabolismo , Hidrogênio/metabolismo , Água/metabolismo , Isótopos de Oxigênio/metabolismo , Folhas de Planta/metabolismo
13.
Plant Cell Environ ; 46(9): 2667-2679, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37303253

RESUMO

Phloem sap transport, velocity and allocation have been proposed to play a role in physiological limitations of crop yield, along with photosynthetic activity or water use efficiency. Although there is clear evidence that carbon allocation to grains effectively drives yield in cereals like wheat (as reflected by the harvest index), the influence of phloem transport rate and velocity is less clear. Here, we took advantage of previously published data on yield, respiration, carbon isotope composition, nitrogen content and water consumption in winter wheat cultivars grown across several sites with or without irrigation, to express grain production in terms of phloem sucrose transport and compare with xylem water transport. Our results suggest that phloem sucrose transport rate follows the same relationship with phloem N transport regardless of irrigation conditions and cultivars, and seems to depend mostly on grain weight (i.e., mg per grain). Depending on the assumption made for phloem sap sucrose concentration, either phloem sap velocity or its proportionality coefficient to xylem velocity change little with environmental conditions. Taken as a whole, phloem transport from leaves to grains seems to be homeostatic within a narrow range of values and following relationships with other plant physiological parameters across cultivars and conditions. This suggests that phloem transport per se is not a limitation for yield in wheat but rather, is controlled to sustain grain filling.


Assuntos
Carbono , Floema , Floema/fisiologia , Transporte Biológico , Água/fisiologia , Sacarose , Grão Comestível
14.
Proc Natl Acad Sci U S A ; 117(39): 24234-24242, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32934141

RESUMO

Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the cornerstone of atmospheric CO2 fixation by the biosphere. It catalyzes the addition of CO2 onto enolized ribulose 1,5-bisphosphate (RuBP), producing 3-phosphoglycerate which is then converted to sugars. The major problem of this reaction is competitive O2 addition, which forms a phosphorylated product (2-phosphoglycolate) that must be recycled by a series of biochemical reactions (photorespiratory metabolism). However, the way the enzyme activates O2 is still unknown. Here, we used isotope effects (with 2H, 25Mg, and 18O) to monitor O2 activation and assess the influence of outer sphere atoms, in two Rubisco forms of contrasted O2/CO2 selectivity. Neither the Rubisco form nor the use of solvent D2O and deuterated RuBP changed the 16O/18O isotope effect of O2 addition, in clear contrast with the 12C/13C isotope effect of CO2 addition. Furthermore, substitution of light magnesium (24Mg) by heavy, nuclear magnetic 25Mg had no effect on O2 addition. Therefore, outer sphere protons have no influence on the reaction and direct radical chemistry (intersystem crossing with triplet O2) does not seem to be involved in O2 activation. Computations indicate that the reduction potential of enolized RuBP (near 0.49 V) is compatible with superoxide (O2•-) production, must be insensitive to deuteration, and yields a predicted 16O/18O isotope effect and energy barrier close to observed values. Overall, O2 undergoes single electron transfer to form short-lived superoxide, which then recombines to form a peroxide intermediate.


Assuntos
Oxigênio/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Dióxido de Carbono/metabolismo , Transporte de Elétrons , Cinética , Isótopos de Oxigênio , Ozônio/metabolismo , Prótons
15.
Int J Mol Sci ; 24(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37108078

RESUMO

Phloem sap transport is essential for plant nutrition and development since it mediates redistribution of nutrients, metabolites and signaling molecules. However, its biochemical composition is not so well-known because phloem sap sampling is difficult and does not always allow extensive chemical analysis. In the past years, efforts have been devoted to metabolomics analyses of phloem sap using either liquid chromatography or gas chromatography coupled with mass spectrometry. Phloem sap metabolomics is of importance to understand how metabolites can be exchanged between plant organs and how metabolite allocation may impact plant growth and development. Here, we provide an overview of our current knowledge of phloem sap metabolome and physiological information obtained therefrom. Although metabolomics analyses of phloem sap are still not numerous, they show that metabolites present in sap are not just sugars and amino acids but that many more metabolic pathways are represented. They further suggest that metabolite exchange between source and sink organs is a general phenomenon, offering opportunities for metabolic cycles at the whole-plant scale. Such cycles reflect metabolic interdependence of plant organs and shoot-root coordination of plant growth and development.


Assuntos
Metabolômica , Floema , Floema/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Metabolômica/métodos , Metaboloma , Açúcares/metabolismo
16.
Plant J ; 107(5): 1478-1489, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34174129

RESUMO

Phosphoglycerate mutases (PGAMs) catalyse the reversible isomerisation of 3-phosphoglycerate and 2-phosphoglycerate, a step of glycolysis. PGAMs can be sub-divided into 2,3-bisphosphoglycerate-dependent (dPGAM) and -independent (iPGAM) enzymes. In plants, phosphoglycerate isomerisation is carried out by cytosolic iPGAM. Despite its crucial role in catabolism, little is known about post-translational modifications of plant iPGAM. In Arabidopsis thaliana, phosphoproteomics analyses have previously identified an iPGAM phosphopeptide where serine 82 is phosphorylated. Here, we show that this phosphopeptide is less abundant in dark-adapted compared to illuminated Arabidopsis leaves. In silico comparison of iPGAM protein sequences and 3D structural modelling of AtiPGAM2 based on non-plant iPGAM enzymes suggest a role for phosphorylated serine in the catalytic reaction mechanism. This is confirmed by the activity (or the lack thereof) of mutated recombinant Arabidopsis iPGAM2 forms, affected in different steps of the reaction mechanism. We thus propose that the occurrence of the S82-phosphopeptide reflects iPGAM2 steady-state catalysis. Based on this assumption, the metabolic consequences of a higher iPGAM activity in illuminated versus darkened leaves are discussed.


Assuntos
Arabidopsis/enzimologia , Fosfoglicerato Mutase/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Glicéricos/metabolismo , Glicólise , Modelos Estruturais , Fosfoglicerato Mutase/genética , Fosforilação , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas Recombinantes , Serina/metabolismo
17.
New Phytol ; 233(3): 1083-1096, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34669188

RESUMO

C4 photosynthesis involves a series of biochemical and anatomical traits that significantly improve plant productivity under conditions that reduce the efficiency of C3 photosynthesis. We explore how evolution of the three classical biochemical types of C4 photosynthesis (NADP-ME, NAD-ME and PCK types) has affected the functions and properties of mitochondria. Mitochondria in C4 NAD-ME and PCK types play a direct role in decarboxylation of metabolites for C4 photosynthesis. Mitochondria in C4 PCK type also provide ATP for C4 metabolism, although this role for ATP provision is not seen in NAD-ME type. Such involvement has increased mitochondrial abundance/size and associated enzymatic capacity, led to changes in mitochondrial location and ultrastructure, and altered the role of mitochondria in cellular carbon metabolism in the NAD-ME and PCK types. By contrast, these changes in mitochondrial properties are absent in the C4 NADP-ME type and C3 leaves, where mitochondria play no direct role in photosynthesis. From an eco-physiological perspective, rates of leaf respiration in darkness vary considerably among C4 species but does not differ systematically among the three C4 types. This review outlines further mitochondrial research in key areas central to the engineering of the C4 pathway into C3 plants and to the understanding of variation in rates of C4 dark respiration.


Assuntos
Malato Desidrogenase , Fotossíntese , Dióxido de Carbono/metabolismo , Malato Desidrogenase/metabolismo , Mitocôndrias/metabolismo , Folhas de Planta/fisiologia
18.
Plant Cell Environ ; 45(10): 3171-3183, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35899865

RESUMO

Plant metabolomics has been used widely in plant physiology, in particular to analyse metabolic responses to environmental parameters. Derivatization (via trimethylsilylation and methoximation) followed by GC-MS metabolic profiling is a major technique to quantify low molecular weight, common metabolites of primary carbon, sulphur and nitrogen metabolism. There are now excellent opportunities for new generation analyses, using high resolution, exact mass GC-MS spectrometers that are progressively becoming relatively cheap. However, exact mass GC-MS analyses for routine metabolic profiling are not common, since there is no dedicated available database. Also, exact mass GC-MS is usually dedicated to structural resolution of targeted secondary metabolites. Here, we present a curated database for exact mass metabolic profiling (made of 336 analytes, 1064 characteristic exact mass fragments) focused on molecules of primary metabolism. We show advantages of exact mass analyses, in particular to resolve isotopic patterns, localise S-containing metabolites, and avoid identification errors when analytes have common nominal mass peaks in their spectrum. We provide a practical example using leaves of different Arabidopsis ecotypes and show how exact mass GC-MS analysis can be applied to plant samples and identify metabolic profiles.


Assuntos
Metaboloma , Metabolômica , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas , Metabolômica/métodos , Plantas
19.
Plant Cell Environ ; 45(9): 2636-2651, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35609972

RESUMO

Experimental approaches to isolate drivers of variation in the carbon-bound hydrogen isotope composition (δ2 H) of plant cellulose are rare and current models are limited in their application. This is in part due to a lack in understanding of how 2 H-fractionations in carbohydrates differ between species. We analysed, for the first time, the δ2 H of leaf sucrose along with the δ2 H and δ18 O of leaf cellulose and leaf and xylem water across seven herbaceous species and a starchless mutant of tobacco. The δ2 H of sucrose explained 66% of the δ2 H variation in cellulose (R2 = 0.66), which was associated with species differences in the 2 H enrichment of sucrose above leaf water ( ε sucrose \unicode{x003B5}sucrose : -126% to -192‰) rather than by variation in leaf water δ2 H itself. ε sucrose \unicode{x003B5}sucrose was positively related to dark respiration (R2 = 0.27), and isotopic exchange of hydrogen in sugars was positively related to the turnover time of carbohydrates (R2 = 0.38), but only when ε sucrose \unicode{x003B5}sucrose was fixed to the literature accepted value of - 171 \unicode{x02212}171 ‰. No relation was found between isotopic exchange of hydrogen and oxygen, suggesting large differences in the processes shaping post-photosynthetic fractionation between elements. Our results strongly advocate that for robust applications of the leaf cellulose hydrogen isotope model, parameterization utilizing δ2 H of sugars is needed.


Assuntos
Hidrogênio , Sacarose , Celulose , Isótopos , Folhas de Planta , Água
20.
Plant Cell Environ ; 45(7): 2145-2157, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35475551

RESUMO

The natural 13 C abundance (δ13 C) in plant leaves has been used for decades with great success in agronomy to monitor water-use efficiency and select modern cultivars adapted to dry conditions. However, in wheat, it is also important to find genotypes with high carbon allocation to spikes and grains, and thus with a high harvest index (HI) and/or low carbon losses via respiration. Finding isotope-based markers of carbon partitioning to grains would be extremely useful since isotope analyses are inexpensive and can be performed routinely at high throughput. Here, we took the advantage of a set of field trials made of more than 600 plots with several wheat cultivars and measured agronomic parameters as well as δ13 C values in leaves and grains. We find a linear relationship between the apparent isotope discrimination between leaves and grain (denoted as Δδcorr ), and the respiration use efficiency-to-HI ratio. It means that overall, efficient carbon allocation to grains is associated with a small isotopic difference between leaves and grains. This effect is explained by postphotosynthetic isotope fractionations, and we show that this can be modelled by equations describing the carbon isotope composition in grains along the wheat growth cycle. Our results show that 13 C natural abundance in grains could be useful to find genotypes with better carbon allocation properties and assist current wheat breeding technologies.


Assuntos
Melhoramento Vegetal , Triticum , Carbono , Isótopos de Carbono , Grão Comestível , Folhas de Planta/genética , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA