Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EMBO J ; 43(20): 4492-4521, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39192032

RESUMO

Glioma cells hijack developmental programs to control cell state. Here, we uncover a glioma cell state-specific metabolic liability that can be therapeutically targeted. To model cell conditions at brain tumor inception, we generated genetically engineered murine gliomas, with deletion of p53 alone (p53) or with constitutively active Notch signaling (N1IC), a pathway critical in controlling astrocyte differentiation during brain development. N1IC tumors harbored quiescent astrocyte-like transformed cell populations while p53 tumors were predominantly comprised of proliferating progenitor-like cell states. Further, N1IC transformed cells exhibited increased mitochondrial lipid peroxidation, high ROS production and depletion of reduced glutathione. This altered mitochondrial phenotype rendered the astrocyte-like, quiescent populations more sensitive to pharmacologic or genetic inhibition of the lipid hydroperoxidase GPX4 and induction of ferroptosis. Treatment of patient-derived early-passage cell lines and glioma slice cultures generated from surgical samples with a GPX4 inhibitor induced selective depletion of quiescent astrocyte-like glioma cell populations with similar metabolic profiles. Collectively, these findings reveal a specific therapeutic vulnerability to ferroptosis linked to mitochondrial redox imbalance in a subpopulation of quiescent astrocyte-like glioma cells resistant to standard forms of treatment.


Assuntos
Ferroptose , Glioblastoma , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Animais , Camundongos , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/genética , Humanos , Mitocôndrias/metabolismo , Astrócitos/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Peroxidação de Lipídeos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
2.
J Public Health Manag Pract ; 28(2): E480-E486, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33797503

RESUMO

BACKGROUND: The Caribbean is a unique region of islands and cays home to nearly 43 million people. A significant challenge facing this population is the burden of traumatic brain injury, which disproportionately affects younger individuals and carries a significant economic burden. A preventive measure to reduce this burden is consistent wearing of helmets. This study aims to assess TBI prevention through helmet safety in Caribbean nations in order to demonstrate the regional impact of public health solutions. METHODS: We assess the member states of the Caribbean Community (CARICOM) and sought to evaluate CARICOM nations' TBI prevention through helmet safety with relation to public health, policy, laws, infrastructure, and regulations. We produced the Rolle Scoring System (RSS) to ascertain the influence of governance around helmet safety for TBI prevention. The RSS aims to provide a quantifiable method of how well a CARICOM nation is performing in efforts to reduce TBI. The RSS is broken down into 2 categories, with scores ranging from 1 (worst) to 5 (best). The range of possible scores a CARICOM nation could receive was 8 to 40. RESULTS: Fourteen CARICOM nations were ultimately incorporated into our analysis. From the initial cohort, 3 were removed. These nations were Anguilla, Saint Kitts & Nevis, and Montserrat. We analyzed values derived from the RSS, finding a mean Rolle score of 22. We further subdivided the nations into low Rolle score (8-24) and high Rolle score (>24). Trinidad and Tobago had the highest Rolle score at 29. Haiti was found to have the lowest Rolle score at 8. CONCLUSION: Several Caribbean nations have demonstrated leadership pertaining to TBI prevention through helmet safety. The regional momentum of helmet safety in the Caribbean can serve as a model for other geographical regional blocs that share interests and culture to consider comprehensive approaches to public health challenges.


Assuntos
Lesões Encefálicas Traumáticas , Dispositivos de Proteção da Cabeça , Lesões Encefálicas Traumáticas/prevenção & controle , Região do Caribe , Serviços de Saúde , Humanos , Índias Ocidentais
3.
Cancers (Basel) ; 16(19)2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39409905

RESUMO

The glioblastoma (GBM) tumor microenvironment consists of a heterogeneous mixture of neoplastic and non-neoplastic cells, including immune cells. Tumor recurrence following standard-of-care therapy results in a rich landscape of inflammatory cells throughout the glioma-infiltrated cortex. Immune cells consisting of glioma-associated macrophages and microglia (GAMMs) overwhelmingly constitute the bulk of the recurrent glioblastoma (rGBM) microenvironment, in comparison to the highly cellular and proliferative tumor microenvironment characteristic of primary GBM. These immune cells dynamically interact within the tumor microenvironment and can contribute to disease progression and therapy resistance while also providing novel targets for emerging immunotherapies. Within these varying contexts, histological-based assessments of immune cells in rGBM, including immunohistochemistry (IHC) and immunofluorescence (IF), offer a critical way to visualize and examine the inflammatory landscape. Here, we exhaustively review the available body of literature on the inflammatory landscape in rGBM as identified through histological-based assessments. We highlight the heterogeneity of immune cells throughout the glioma-infiltrated cortex with a focus on microglia and macrophages, drawing insights from canonical and novel immune-cell histological markers to estimate cell phenotypes and function. Lastly, we discuss opportunities for immunomodulatory treatments aiming to harness the inflammatory landscape in rGBM.

4.
World Neurosurg ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39147022

RESUMO

BACKGROUND/OBJECTIVE: Intracranial epidermoid tumors (ETs) are rare, benign lesions that present significant challenges in neurosurgical management due to their propensity to encase vital neurovascular structures. We aimed to evaluate the impact of clinical, demographic, and tumor-specific factors on surgical decisions (gross total resection [GTR] vs. subtotal resection [STR]) and outcomes and identify patient clusters with distinct profiles and outcomes post-resection. METHODS: We retrospectively analyzed 72 patients with ET treated from 1998 to 2022, employing multivariable logistic regression for GTR versus STR predictors and Kaplan-Meier curves for progression-free survival (PFS). K-prototype clustering classified patients based on clinical data. RESULTS: The mean age of our cohort was 39.8 ± 20.1 years. About 13.9% of patients had a recurrence, with a median PFS of 108 months (interquartile range: 57 -206). Seizures significantly predicted GTR (P < 0.05), whereas adherence to critical structures reduced GTR likelihood (P < 0.05). Initial surgeries more often achieved GTR, correlating with longer PFS (P < 0.0001) and reduced recurrence (P < 0.01) versus re-operations. Cluster analysis identified three distinct groups, with the initial GTR cluster showing superior PFS and the lowest recurrence (P < 0.0001 and P < 0.01, respectively). Statistically significant predictors of PFS included age and preoperative seizure presence, with older age favoring longer PFS (P < 0.01) and seizures associated with reduced PFS (P < 0.01). In addition, patients with previous surgeries showed a trend toward shorter PFS (P < 0.05). CONCLUSIONS: This study emphasizes the importance of tailored surgical strategies in managing intracranial ETs, advocating for GTR to optimize long-term outcomes where possible. Future prospective studies are essential to further refine treatment approaches, enhancing survival for ET patients.

5.
Neurooncol Adv ; 5(1): vdad044, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215957

RESUMO

The prognosis for glioblastoma has remained poor despite multimodal standard of care treatment, including temozolomide, radiation, and surgical resection. Further, the addition of immunotherapies, while promising in a number of other solid tumors, has overwhelmingly failed in the treatment of gliomas, in part due to the immunosuppressive microenvironment and poor drug penetrance to the brain. Local delivery of immunomodulatory therapies circumvents some of these challenges and has led to long-term remission in select patients. Many of these approaches utilize convection-enhanced delivery (CED) for immunological drug delivery, allowing high doses to be delivered directly to the brain parenchyma, avoiding systemic toxicity. Here, we review the literature encompassing immunotherapies delivered via CED-from preclinical model systems to clinical trials-and explore how their unique combination elicits an antitumor response by the immune system, decreases toxicity, and improves survival among select high-grade glioma patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA