Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Appl Microbiol Biotechnol ; 107(4): 1095-1106, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36648524

RESUMO

Accidental oil spills can result in catastrophic ecological insults and therefore require rapid intervention to mitigate the potential impacts to aquatic ecosystems. One of the largest oil spills, known as the Deepwater Horizon oil spill, occurred in the Spring of 2010 near the coast of Louisiana (USA) due to an explosion during oil drilling activities. Millions of gallons of oil were released into the Gulf of Mexico, impacting thousands of ocean miles and coastal areas linked to the gulf. Among the actions taken during the remediation efforts was the unprecedented large use of Corexit dispersants, including at the subsurface to prevent oil from reaching the surface. While there is evidence that dispersants can accelerate the biodegradation of oil, reports on their potential toxicity to aquatic biota and to microbial functions have also been documented. In this review, we will examine the most recent literature on the impact of dispersants on microbial communities implicated in oil degradation and overall ecological networks. The primary focus will be on studies using Corexit but other dispersants will be discussed if data are available. We will share the literature gaps identified and discuss future work that is needed to reconcile some of the discrepancies found on the effectiveness of dispersants on oil degradation and their potential toxicity. KEY POINTS: • Chemical dispersants have been applied as a chemical response measure for oil spills. • The effects of chemical dispersants on microbial communities have been the subject of substantial research. • This work seeks to review recent work on the impact of chemical dispersants on oil biodegradation, microbial communities, and ecosystems.


Assuntos
Microbiota , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Biodegradação Ambiental , Golfo do México , Poluentes Químicos da Água/metabolismo , Petróleo/metabolismo
2.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-37061790

RESUMO

Waste plastic presently accumulates in landfills or the environment. While natural microbial metabolisms can degrade plastic polymers, biodegradation of plastic is very slow. This study demonstrates that chemical deconstruction of polyethylene terephthalate (PET) with ammonium hydroxide can replace the rate limiting step (depolymerization) and by producing plastic-derived terephthalic acid and terephthalic acid monoamide. The deconstructed PET (DCPET) is neutralized with phosphoric acid prior to bioprocessing, resulting in a product containing biologically accessible nitrogen and phosphorus from the process reactants. Three microbial consortia obtained from compost and sediment degraded DCPET in ultrapure water and scavenged river water without addition of nutrients. No statistically significant difference was observed in growth rate compared to communities grown on DCPET in minimal culture medium. The consortia were dominated by Rhodococcus spp., Hydrogenophaga spp., and many lower abundance genera. All taxa were related to species known to degrade aromatic compounds. Microbial consortia are known to confer flexibility in processing diverse substrates. To highlight this, we also demonstrate that two microbial consortia can grow on similarly deconstructed polyesters, polyamides, and polyurethanes in water instead of medium. Our findings suggest that microbial communities may enable flexible bioprocessing of mixed plastic wastes when coupled with chemical deconstruction.


Assuntos
Microbiota , Plásticos , Plásticos/metabolismo , Hidróxido de Amônia , Biodegradação Ambiental , Água
3.
Antimicrob Agents Chemother ; 66(6): e0203121, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35604211

RESUMO

Antimicrobials such as nanoparticles and biocides are used to control microbial growth. We used Escherichia coli to study the process of acquired resistance to silver nanoparticles (Ag-NP) and the industrial biocide DBNPA when grown in sub-MICs. We determined the MICs of these two antimicrobials against E. coli. We then performed an experimental evolution study where E. coli was grown in subinhibitory concentrations of the antimicrobials and transferred 10 times. We then tracked the changes in growth characteristics, lactate dehydrogenase (LDH) activity, reactive oxidative species (ROS) production, and the role of efflux pumps in conferring resistance. We also performed genome sequencing to determine the genetic basis for acquired resistance. Our results showed that E. coli could rapidly develop resistance to Ag-NP and DBNPA after growth in low concentrations of the antimicrobials. The expression of efflux pumps plays a vital role in both Ag-NP and DBNPA resistance. Multiple mutations occurred in the adapted strains that may confer resistance to both Ag-NP and DBNPA. Our study provides insights into mechanisms of adaptation and resistance to antimicrobials. Our results suggest that there are some shared mechanisms to resist nanoparticles and biocides as well as some key differences. The mechanism of resistance to Ag-NP might be related to flagellin production, while efflux pumps seem to be associated with resistance to DBNPA. This work provides a comparative study of the mechanisms of acquired resistance to these two types of antimicrobials.


Assuntos
Anti-Infecciosos , Desinfetantes , Nanopartículas Metálicas , Antibacterianos/farmacologia , Desinfetantes/farmacologia , Escherichia coli/genética , Nitrilas , Prata/farmacologia
4.
Appl Environ Microbiol ; 87(12): e0024121, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33811029

RESUMO

Hydrologic shifts due to climate change will affect the cycling of carbon (C) stored in boreal peatlands. Carbon cycling in these systems is carried out by microorganisms and plants in close association. This study investigated the effects of experimentally manipulated water tables (lowered and raised) and plant functional groups on the peat and root microbiomes in a boreal rich fen. All samples were sequenced and processed for bacterial, archaeal (16S DNA genes; V4), and fungal (internal transcribed spacer 2 [ITS2]) DNA. Depth had a strong effect on microbial and fungal communities across all water table treatments. Bacterial and archaeal communities were most sensitive to the water table treatments, particularly at the 10- to 20-cm depth; this area coincides with the rhizosphere or rooting zone. Iron cyclers, particularly members of the family Geobacteraceae, were enriched around the roots of sedges, horsetails, and grasses. The fungal community was affected largely by plant functional group, especially cinquefoils. Fungal endophytes (particularly Acephala spp.) were enriched in sedge and grass roots, which may have underappreciated implications for organic matter breakdown and cycling. Fungal lignocellulose degraders were enriched in the lowered water table treatment. Our results were indicative of two main methanogen communities, a rooting zone community dominated by the archaeal family Methanobacteriaceae and a deep peat community dominated by the family Methanomicrobiaceae. IMPORTANCE This study demonstrated that roots and the rooting zone in boreal fens support organisms likely capable of methanogenesis, iron cycling, and fungal endophytic association and are directly or indirectly affecting carbon cycling in these ecosystems. These taxa, which react to changes in the water table and associate with roots and, particularly, graminoids, may gain greater biogeochemical influence, as projected higher precipitation rates could lead to an increased abundance of sedges and grasses in boreal fens.


Assuntos
Água Subterrânea , Magnoliopsida/microbiologia , Raízes de Plantas/microbiologia , Rizosfera , Microbiologia do Solo , Alaska , Archaea/genética , Archaea/isolamento & purificação , Archaea/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Ciclo do Carbono , Ferro/metabolismo , Metano/metabolismo , Microbiota , Solo
5.
Appl Environ Microbiol ; 85(24)2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31585994

RESUMO

In the past, ballast water has been a key vector in the ship-mediated dispersal of invasive species. Here, we evaluate the potential for port microorganisms to enter and colonize the hull and bilge water of ships. Due to the small size and ubiquitous nature of bacteria, they also have the potential to be spread through hull fouling and bilge water discharge. The goal of this study was to identify the extent to which the boat microbial community is shaped by the microbial community in the port water where the boat spends most of its time. Here, we compared the microbial communities of the hull and bilge compartments of 20 boats to those of the port water in 20 different ports in five regions around the world. We found that there was a significant difference in microbial diversity between boat and port microbial communities. Despite these differences, we found that Cyanobacteria were present at high abundances in the bilge water of most vessels. Due to the limited light in the bilge, the presence of Cyanobacteria suggests that port microorganisms can enter the bilge. Using source-tracking software, we found that, on average, 40% of the bilge and 52% of the hull microbial communities were derived from water. These findings suggest that the bilge of a vessel contains a diverse microbial community that is influenced by the port microbial community and has the potential to serve as an underappreciated vector for dispersal of life.IMPORTANCE Invasive species have been a worldwide problem for many years. However, the potential for microorganisms to become invasive is relatively underexplored. As the tools to study bacterial communities become more affordable, we are able to perform large-scale studies and examine bacterial communities in higher resolution than was previously practical. This study looked at the potential for bacteria to colonize both boat surfaces and bilge water. We describe the bacterial communities on boats in 20 shipping ports in five regions around the world, describing how these microorganisms were similar to microorganisms found in port water. This suggests that the water influences the bacterial community of a boat and that microorganisms living on a boat could be moved from place to place when the boat travels.


Assuntos
Microbiota , Navios , Microbiologia da Água , Água/química , Biodiversidade , Cianobactérias , Espécies Introduzidas , Microbiota/genética , RNA Ribossômico 16S/genética
6.
Appl Environ Microbiol ; 85(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31444200

RESUMO

Production of unconventional oil and gas continues to rise, but the effects of high-density hydraulic fracturing (HF) activity near aquatic ecosystems are not fully understood. A commonly used biocide in HF, 2,2-dibromo-3-nitrilopropionamide (DBNPA), was studied in microcosms of HF-impacted (HF+) versus HF-unimpacted (HF-) surface water streams to (i) compare the microbial community response, (ii) investigate DBNPA degradation products based on past HF exposure, and (iii) compare the microbial community response differences and similarities between the HF biocides DBNPA and glutaraldehyde. The microbial community responded to DBNPA differently in HF-impacted versus HF-unimpacted microcosms in terms of the number of 16S rRNA gene copies quantified, alpha and beta diversity, and differential abundance analyses of microbial community composition through time. The differences in microbial community changes affected degradation dynamics. HF-impacted microbial communities were more sensitive to DBNPA, causing the biocide and by-products of the degradation to persist for longer than in HF-unimpacted microcosms. A total of 17 DBNPA by-products were detected, many of them not widely known as DBNPA by-products. Many of the brominated by-products detected that are believed to be uncharacterized may pose environmental and health impacts. Similar taxa were able to tolerate glutaraldehyde and DBNPA; however, DBNPA was not as effective for microbial control, as indicated by a smaller overall decrease of 16S rRNA gene copies/ml after exposure to the biocide, and a more diverse set of taxa was able to tolerate it. These findings suggest that past HF activity in streams can affect the microbial community response to environmental perturbation such as that caused by the biocide DBNPA.IMPORTANCE Unconventional oil and gas activity can affect pH, total organic carbon, and microbial communities in surface water, altering their ability to respond to new environmental and/or anthropogenic perturbations. These findings demonstrate that 2,2-dibromo-3-nitrilopropionamide (DBNPA), a common hydraulic fracturing (HF) biocide, affects microbial communities differently as a consequence of past HF exposure, persisting longer in HF-impacted (HF+) waters. These findings also demonstrate that DBNPA has low efficacy in environmental microbial communities regardless of HF impact. These findings are of interest, as understanding microbial responses is key for formulating remediation strategies in unconventional oil and gas (UOG)-impacted environments. Moreover, some DBNPA degradation by-products are even more toxic and recalcitrant than DBNPA itself, and this work identifies novel brominated degradation by-products formed.


Assuntos
Desinfetantes/farmacologia , Microbiota/efeitos dos fármacos , Nitrilas/farmacologia , Ecologia , Fraturamento Hidráulico/métodos , Microbiota/genética , RNA Ribossômico 16S/genética , Rios , Águas Residuárias/análise , Microbiologia da Água , Poluentes Químicos da Água/análise , Purificação da Água
7.
Environ Sci Technol ; 52(10): 5989-5999, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29683652

RESUMO

The environmental impacts of hydraulic fracturing, particularly those of surface spills in aquatic ecosystems, are not fully understood. The goals of this study were to (1) understand the effect of previous exposure to hydraulic fracturing fluids on aquatic microbial community structure and (2) examine the impacts exposure has on biodegradation potential of the biocide glutaraldehyde. Microcosms were constructed from hydraulic fracturing-impacted and nonhydraulic fracturing-impacted streamwater within the Marcellus shale region in Pennsylvania. Microcosms were amended with glutaraldehyde and incubated aerobically for 56 days. Microbial community adaptation to glutaraldehyde was monitored using 16S rRNA gene amplicon sequencing and quantification by qPCR. Abiotic and biotic glutaraldehyde degradation was measured using ultra-performance liquid chromatography--high resolution mass spectrometry and total organic carbon. It was found that nonhydraulic fracturing-impacted microcosms biodegraded glutaraldehyde faster than the hydraulic fracturing-impacted microcosms, showing a decrease in degradation potential after exposure to hydraulic fracturing activity. Hydraulic fracturing-impacted microcosms showed higher richness after glutaraldehyde exposure compared to unimpacted streams, indicating an increased tolerance to glutaraldehyde in hydraulic fracturing impacted streams. Beta diversity and differential abundance analysis of sequence count data showed different bacterial enrichment for hydraulic fracturing-impacted and nonhydraulic fracturing-impacted microcosms after glutaraldehyde addition. These findings demonstrated a lasting effect on microbial community structure and glutaraldehyde degradation potential in streams impacted by hydraulic fracturing operations.


Assuntos
Fraturamento Hidráulico , Microbiota , Glutaral , Pennsylvania , RNA Ribossômico 16S , Rios
8.
Appl Environ Microbiol ; 83(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28283527

RESUMO

To better understand the impacts of Corexit 9500 on the structure and activity levels of hydrocarbon-degrading microbial communities, we analyzed next-generation 16S rRNA gene sequencing libraries of hydrocarbon enrichments grown at 5 and 25°C using both DNA and RNA extracts as the sequencing templates. Oil biodegradation patterns in both 5 and 25°C enrichments were consistent with those reported in the literature (i.e., aliphatics were degraded faster than aromatics). Slight increases in biodegradation were observed in the presence of Corexit at both temperatures. Differences in community structure were observed between treatment conditions in the DNA-based libraries. The 25°C consortia were dominated by Vibrio, Idiomarina, Marinobacter, Alcanivorax, and Thalassospira species, while the 5°C consortia were dominated by several species of the genera Flavobacterium, Alcanivorax, and Oleispira Most of these genera have been linked to hydrocarbon degradation and have been observed after oil spills. Colwellia and Cycloclasticus, known aromatic degraders, were also found in these enrichments. The addition of Corexit did not have an effect on the active bacterial community structure of the 5°C consortia, while at 25°C, a decrease in the relative abundance of Marinobacter was observed. At 25°C, Thalassospira, Marinobacter, and Idiomarina were present at higher relative abundances in the RNA than DNA libraries, suggesting that they were active in degradation. Similarly, Oleispira was greatly stimulated by the addition of oil at 5°C.IMPORTANCE While dispersants such as Corexit 9500 can be used to treat oil spills, there is still debate on the effectiveness on enhancing oil biodegradation and its potential toxic effect on oil-degrading microbial communities. The results of this study provide some insights on the microbial dynamics of hydrocarbon-degrading bacterial populations in the presence of Corexit 9500. Operational taxonomic unit (OTU) analyses indicated that several OTUs were inhibited by the addition of Corexit. Conversely, a number of OTUs were stimulated by the addition of the dispersant, many of which were identified as known hydrocarbon-degrading bacteria. The results highlight the value of using RNA-based methods to further understand the impact of dispersant on the overall activity of different hydrocarbon-degrading bacterial groups.


Assuntos
Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Lipídeos/farmacologia , Bactérias/classificação , Bactérias/genética , Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Poluição por Petróleo/análise , Filogenia
9.
J Ind Microbiol Biotechnol ; 43(10): 1345-54, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27558781

RESUMO

With the rapid advances in sequencing technology, the cost of sequencing has dramatically dropped and the scale of sequencing projects has increased accordingly. This has provided the opportunity for the routine use of sequencing techniques in the monitoring of environmental microbes. While metagenomic applications have been routinely applied to better understand the ecology and diversity of microbes, their use in environmental monitoring and bioremediation is increasingly common. In this review we seek to provide an overview of some of the metagenomic techniques used in environmental systems biology, addressing their application and limitation. We will also provide several recent examples of the application of metagenomics to bioremediation. We discuss examples where microbial communities have been used to predict the presence and extent of contamination, examples of how metagenomics can be used to characterize the process of natural attenuation by unculturable microbes, as well as examples detailing the use of metagenomics to understand the impact of biostimulation on microbial communities.


Assuntos
Microbiologia Ambiental , Monitoramento Ambiental , Metagenômica , Biodegradação Ambiental , Biologia de Sistemas
10.
Mar Pollut Bull ; 199: 115884, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38118397

RESUMO

Objects collect microorganisms from their surroundings and develop a microbial "fingerprint" that may be useful for determining an object's past location (provenance). It may be possible to use ubiquitous microorganisms for forensics or as environmental sensors. Here, we use microbial communities in the Chesapeake Bay region to demonstrate the use of natural microorganisms as biological sensors to determine the past location of boats. The microbiomes of two boats and of the open water were sampled as these vessels traveled from the Port of Baltimore to the Port of Norfolk, and back to Baltimore. 16S rRNA sequencing was performed to identify microorganisms. Differential abundance and machine learning analyses were utilized to identify microbial signatures and predicted probabilities which were used to determine the vessel's previous location. The work presented here provides a better understanding of how microbes in aquatic systems can be leveraged as utility for object biosensors.


Assuntos
Microbiota , Navios , RNA Ribossômico 16S/genética , Microbiota/genética , Água , Microbiologia da Água
11.
Cell Rep Med ; 5(1): 101350, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38134931

RESUMO

Every year, 11% of infants are born preterm with significant health consequences, with the vaginal microbiome a risk factor for preterm birth. We crowdsource models to predict (1) preterm birth (PTB; <37 weeks) or (2) early preterm birth (ePTB; <32 weeks) from 9 vaginal microbiome studies representing 3,578 samples from 1,268 pregnant individuals, aggregated from public raw data via phylogenetic harmonization. The predictive models are validated on two independent unpublished datasets representing 331 samples from 148 pregnant individuals. The top-performing models (among 148 and 121 submissions from 318 teams) achieve area under the receiver operator characteristic (AUROC) curve scores of 0.69 and 0.87 predicting PTB and ePTB, respectively. Alpha diversity, VALENCIA community state types, and composition are important features in the top-performing models, most of which are tree-based methods. This work is a model for translation of microbiome data into clinically relevant predictive models and to better understand preterm birth.


Assuntos
Crowdsourcing , Microbiota , Nascimento Prematuro , Gravidez , Feminino , Recém-Nascido , Humanos , Filogenia , Vagina , Microbiota/genética
12.
Proc Natl Acad Sci U S A ; 107(47): 20269-74, 2010 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-21057109

RESUMO

Chaperonins (CPN) are ubiquitous oligomeric protein machines that mediate the ATP-dependent folding of polypeptide chains. These chaperones have not only been assigned stress response and normal housekeeping functions but also have a role in certain human disease states. A longstanding convention divides CPNs into two groups that share many conserved sequence motifs but differ in both structure and distribution. Group I complexes are the well known GroEL/ES heat-shock proteins in bacteria, that also occur in some species of mesophilic archaea and in the endosymbiotic organelles of eukaryotes. Group II CPNs are found only in the cytosol of archaea and eukaryotes. Here we report a third, divergent group of CPNs found in several species of bacteria. We propose to name these Group III CPNs because of their distant relatedness to both Group I and II CPNs as well as their unique genomic context, within the hsp70 operon. The prototype Group III CPN, Carboxydothermus hydrogenoformans chaperonin (Ch-CPN), is able to refold denatured proteins in an ATP-dependent manner and is structurally similar to the Group II CPNs, forming a 16-mer with each subunit contributing to a flexible lid domain. The Group III CPN represent a divergent group of bacterial CPNs distinct from the GroEL/ES CPN found in all bacteria. The Group III lineage may represent an ancient horizontal gene transfer from an archaeon into an early Firmicute lineage. An analysis of their functional and structural characteristics may provide important insights into the early history of this ubiquitous family of proteins.


Assuntos
Chaperoninas/classificação , Chaperoninas/genética , Bactérias Gram-Positivas/genética , Modelos Moleculares , Filogenia , Dobramento de Proteína , Trifosfato de Adenosina/metabolismo , Archaea/genética , Sequência de Bases , Chaperoninas/metabolismo , Análise por Conglomerados , Primers do DNA/genética , Eletroforese em Gel de Poliacrilamida , Componentes do Gene , Microscopia Eletrônica , Modelos Genéticos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Análise de Sequência de DNA
13.
Microbiol Spectr ; 11(3): e0031622, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37017561

RESUMO

There is a growing need for biological and chemical methods for upcycling plastic waste streams. Pyrolysis processes can accelerate plastic depolymerization by breaking polyethylene into smaller alkene components which may be more biodegradable than the initial polymer. While the biodegradation of alkanes has been extensively studied, the role microorganisms play in alkene breakdown is not well understood. Alkene biodegradation holds the potential to contribute to the coupling of chemical and biological processing of polyethylene plastics. In addition, nutrient levels are known to impact rates of hydrocarbon degradation. Model alkenes were used (C6, C10, C16, and C20) to follow the breakdown capability of microbial communities from three environmental inocula in three nutrient levels over the course of 5 days. Higher-nutrient cultures were anticipated to exhibit enhanced biodegradation capabilities. Alkene mineralization was assessed by measuring CO2 production in the culture headspace using GC-FID (gas chromatography-flame ionization detection), and alkene breakdown was directly quantified by measuring extracted residual hydrocarbons using gas chromatography-mass spectrometry (GC/MS). Here, the efficacy of enriched consortia derived from the microbial communities of three inoculum sources (farm compost, Caspian Sea sediment, and an iron-rich sediment) at alkene breakdown was investigated over the course of 5 days across three nutrient treatments. No significant differences in CO2 production across nutrient levels or inoculum types were found. A high extent of biodegradation was observed in all sample types, with most samples achieving 60% to 95% biodegradation of all quantified compounds. Here, our findings indicate that alkene biodegradation is a common metabolic process in diverse environments and that nutrient levels common to culture media can support the growth of alkene-biodegrading consortia, primarily from the families Xanthamonadaceae, Nocardiaceae, and Beijerinkiaceae. IMPORTANCE Excess plastic waste poses a major environmental problem. Microorganisms can metabolize many of the breakdown products (alkenes) of plastics. While microbial degradation of plastics is typically slow, coupling chemical and biological processing of plastics has the potential to lead to novel methods for the upcycling of plastic wastes. Here, we explored how microbial consortia derived from diverse environments metabolize alkenes, which are produced by the pyrolysis of polyolefin plastics such as HDPE, and PP. We found that microbial consortia from diverse environments can rapidly metabolize alkenes of different chain lengths. We also explored how nutrients affect the rates of alkene breakdown and the microbial diversity of the consortia. Here, the findings indicate that alkene biodegradation is a common metabolism in diverse environments (farm compost, Caspian sediment, and iron-rich sediment) and that nutrient levels common to culture medium can support growth of alkene-biodegrading consortia, primarily from families Xanthamonadaceae, Nocardiaceae, and Beijerinkiaceae.


Assuntos
Alcenos , Microbiota , Humanos , Dióxido de Carbono , Consórcios Microbianos , Plásticos/metabolismo , Polietileno/química , Polietileno/metabolismo , Nutrientes
14.
Chemosphere ; 340: 139812, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37597630

RESUMO

The use of arsenic (As) for various industrial and agricultural applications has led to worldwide environmental contamination. Phytoremediation using hyperaccumulators is a sustainable soil As mitigation strategy. Microbial processes play an important role in the tolerance and uptake of trace elements such as in plants. The rhizospheric and endophytic microbial communities are responsible for accelerating the mobility of trace elements around the roots and the production of plant growth-promoting compounds and enzymes. Several studies have reported that the As hyperaccumulator, Pteris vittata L. (PV) influences the microbial community in its rhizosphere and roots. Deciphering the differences in the microbiomes of hyperaccumulators and non-accumulators is crucial in understanding the mechanism of hyperaccumulation. We hypothesized that there are significant differences in the microbiome of roots, rhizospheric soil, and bulk soil between the hyperaccumulator PV and a non-accumulator of the same genus, Pteris ensiformis Burm. (PE), and that the differential recruitment of bacterial communities provides PV with an advantage in As contaminated soil. We compared root endophytic, rhizospheric, and bulk soil microbial communities between PV and PE species grown in As-contaminated soil in a greenhouse setting. There was a significant difference (p < 0.001) in the microbiome of the three compartments between the ferns. Differential abundance analysis showed 328 Amplicon Sequence Variants (ASVs) enriched in PV compared to 172 in PE. The bulk and rhizospheric soil of both ferns were abundant in As-resistant genera. However, As-tolerant root endophytic genera were present in PV but absent in PE. Our findings show that there is a difference between the bacterial composition of an As hyperaccumulator and a non-accumulator species grown in As-contaminated soil. These differences need to be further explored to develop strategies for improving the efficiency of metal uptake in plants growing in As polluted soil.


Assuntos
Arsênio , Gleiquênias , Pteris , Oligoelementos , Agricultura , Solo
15.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37573136

RESUMO

Intra-specific genomic diversity is well documented in microbes. The question, however, remains whether natural selection or neutral evolution is the major contributor to this diversity. We undertook this study to estimate genomic diversity in Pseudoalteromonas atlantica populations and whether the diversity, if present, could be attributed to environmental factors or distance effects. We isolated and sequenced twenty-three strains of P. atlantica from three geographically distant deep marine basins and performed comparative genomic analyses to study the genomic diversity of populations among these basins. Average nucleotide identity followed a strictly geographical pattern. In two out of three locations, the strains within the location exhibited >99.5% identity, whereas, among locations, the strains showed <98.11% identity. Phylogenetic and pan-genome analysis also reflected the biogeographical separation of the strains. Strains from the same location shared many accessory genes and clustered closely on the phylogenetic tree. Phenotypic diversity between populations was studied in ten out of twenty-three strains testing carbon and nitrogen source utilization and osmotolerance. A genetic basis for phenotypic diversity could be established in most cases but was apparently not influenced by local environmental conditions. Our study suggests that neutral evolution may have a substantial role in the biodiversity of P. atlantica.


Assuntos
Pseudoalteromonas , Filogenia , Biodiversidade
16.
Trends Biotechnol ; 41(2): 184-196, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36058768

RESUMO

Most polyethylene terephthalate (PET) plastic waste is landfilled or pollutes the environment. Additionally, global food production must increase to support the growing population. This article explores the feasibility of using microorganisms in an industrial system that upcycles PET into edible microbial protein powder to solve both problems simultaneously. Many microorganisms can utilize plastics as feedstock, and the resultant microbial biomass contains fats, nutrients, and proteins similar to those found in human diets. While microbial degradation of PET is promising, biological PET depolymerization is too slow to resolve the global plastic crisis and projected food shortages. Evidence reviewed here suggests that by coupling chemical depolymerization and biological degradation of PET, and using cooperative microbial communities, microbes can efficiently convert PET waste into food.


Assuntos
Microbiota , Plásticos , Humanos , Plásticos/química , Polietilenotereftalatos/química , Polietilenotereftalatos/metabolismo , Alimentos , Biomassa
17.
Microbiol Spectr ; 11(4): e0036223, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37260392

RESUMO

Over half of the world's plastic waste is landfilled, where it is estimated to take hundreds of years to degrade. Given the continued use and disposal of plastic products, it is vital that we develop fast and effective ways to utilize plastic waste. Here, we explore the potential of tandem chemical and biological processing to process various plastics quickly and effectively. Four samples of compost or sediment were used to set up enrichment cultures grown on mixtures of compounds, including disodium terephthalate and terephthalic acid (monomers of polyethylene terephthalate), compounds derived from the chemical deconstruction of polycarbonate, and pyrolysis oil derived from high-density polyethylene plastics. Established enrichment communities were also grown on individual substrates to investigate the substrate preferences of different taxa. Biomass harvested from the cultures was characterized using 16S rRNA gene amplicon sequencing and shotgun metagenomic sequencing. These data reveal low-diversity microbial communities structured by differences in culture inoculum, culture substrate source plastic type, and time. Microbial populations from the classes Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, and Acidobacteriae were significantly enriched when grown on substrates derived from high-density polyethylene and polycarbonate. The metagenomic data contain abundant aromatic and aliphatic hydrocarbon degradation genes relevant to the biodegradation of deconstructed plastic substrates used here. We show that microbial populations from diverse environments are capable of growth on substrates derived from the chemical deconstruction or pyrolysis of multiple plastic types and that paired chemical and biological processing of plastics should be further developed for industrial applications to manage plastic waste. IMPORTANCE The durability and impermeable nature of plastics have made them a popular material for numerous applications, but these same qualities make plastics difficult to dispose of, resulting in massive amounts of accumulated plastic waste in landfills and the natural environment. Since plastic use and disposal are projected to increase in the future, novel methods to effectively break down and dispose of current and future plastic waste are desperately needed. We show that the products of chemical deconstruction or pyrolysis of plastic can successfully sustain the growth of low-diversity microbial communities. These communities were enriched from multiple environmental sources and are capable of degrading complex xenobiotic carbon compounds. This study demonstrates that tandem chemical and biological processing can be used to degrade multiple types of plastics over a relatively short period of time and may be a future avenue for the mitigation of rapidly accumulating plastic waste.


Assuntos
Plásticos , Polietileno , Plásticos/metabolismo , Polietileno/metabolismo , RNA Ribossômico 16S/genética , Polietilenotereftalatos/metabolismo , Bactérias
18.
Microbiome ; 11(1): 224, 2023 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838714

RESUMO

BACKGROUND: Plastic-degrading microbial isolates offer great potential to degrade, transform, and upcycle plastic waste. Tandem chemical and biological processing of plastic wastes has been shown to substantially increase the rates of plastic degradation; however, the focus of this work has been almost entirely on microbial isolates (either bioengineered or naturally occurring). We propose that a microbial community has even greater potential for plastic upcycling. A microbial community has greater metabolic diversity to process mixed plastic waste streams and has built-in functional redundancy for optimal resilience. RESULTS: Here, we used two plastic-derivative degrading communities as a model system to investigate the roles of specialist and generalist species within the microbial communities. These communities were grown on five plastic-derived substrates: pyrolysis treated high-density polyethylene, chemically deconstructed polyethylene terephthalate, disodium terephthalate, terephthalamide, and ethylene glycol. Short-read metagenomic and metatranscriptomic sequencing were performed to evaluate activity of microorganisms in each treatment. Long-read metagenomic sequencing was performed to obtain high-quality metagenome assembled genomes and evaluate division of labor. CONCLUSIONS: Data presented here show that the communities are primarily dominated by Rhodococcus generalists and lower abundance specialists for each of the plastic-derived substrates investigated here, supporting previous research that generalist species dominate batch culture. Additionally, division of labor may be present between Hydrogenophaga terephthalate degrading specialists and lower abundance protocatechuate degrading specialists. Video Abstract.


Assuntos
Microbiota , Ácidos Ftálicos , Polietileno/química , Polietileno/metabolismo , Metagenoma
19.
Microbiol Resour Announc ; 12(7): e0130422, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37338395

RESUMO

We report the metagenome sequences of two microbial cultures that were grown with chemically deconstructed plastic products as their sole carbon source. These metagenomes will provide insights into the metabolic capabilities of cultures grown on deconstructed plastics and can serve as a starting point for the identification of novel plastic degradation mechanisms.

20.
medRxiv ; 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36945505

RESUMO

Globally, every year about 11% of infants are born preterm, defined as a birth prior to 37 weeks of gestation, with significant and lingering health consequences. Multiple studies have related the vaginal microbiome to preterm birth. We present a crowdsourcing approach to predict: (a) preterm or (b) early preterm birth from 9 publicly available vaginal microbiome studies representing 3,578 samples from 1,268 pregnant individuals, aggregated from raw sequences via an open-source tool, MaLiAmPi. We validated the crowdsourced models on novel datasets representing 331 samples from 148 pregnant individuals. From 318 DREAM challenge participants we received 148 and 121 submissions for our two separate prediction sub-challenges with top-ranking submissions achieving bootstrapped AUROC scores of 0.69 and 0.87, respectively. Alpha diversity, VALENCIA community state types, and composition (via phylotype relative abundance) were important features in the top performing models, most of which were tree based methods. This work serves as the foundation for subsequent efforts to translate predictive tests into clinical practice, and to better understand and prevent preterm birth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA