Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 52(3): 1533-1541, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29283575

RESUMO

Tetradecabromo-1,4-diphenoxybenzene (TeDB-DiPhOBz) is a highly brominated additive flame retardant (FR). Debrominated photodegradates of TeDB-DiPhOBz are hydroxylated in vitro in liver microsomal assays based on herring gulls (Larus argentatus), including one metabolite identified as 4″-OH-2,2',2″,4-tetrabromo-DiPhOBz. Chemically related methoxylated tetra- to hexabromo-DiPhOBzs are known contaminants in herring gulls. Collectively, nothing is currently known about biological effects of these polybrominated (PB) DiPhOBz-based compounds. The present study investigated the potential thyroidogenicity of 2,2',2″,4-tetrabromo-(TB)-DiPhOBz along with its para-methoxy (MeO)- and hydroxy-(OH)-analogues, using an in vitro competitive protein binding assay with the human thyroid hormone (TH) transport proteins transthyretin (hTTR) and albumin (hALB). This model para-OH-TB-DiPhOBz was found to be capable of competing with thyroxine (T4) for the binding site on hTTR and hALB. In silico analyses were also conducted using a 3D homology model for gull TTR, to predict whether these TB-DiPhOBz-based compounds may also act as ligands for an avian TH transport protein despite evolutionary differences with hTTR. This analysis found all three TB-DiPhOBz analogues to be potential ligands for gull TTR and have similar binding efficacies to THs. Results indicate structure-related differences in binding affinities of these ligands and suggest there is potential for these contaminants to interact with both mammalian and avian thyroid function.


Assuntos
Charadriiformes , Retardadores de Chama , Animais , Ligação Competitiva , Éter , Éteres , Humanos
2.
Environ Sci Technol ; 50(15): 8335-43, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27351066

RESUMO

Tetradecabromo-1,4-diphenoxybenzene (TeDB-DiPhOBz) is used as a flame retardant chemical and has been hypothesized to be the precursor of methoxylated polybrominated diphenoxybenzene (MeO-PB-DiPhOBz) contaminants reported in herring gulls from sites across the Laurentian Great Lakes. Here, by irradiating the parent TeDB-DiPhOBz (solution 1) with natural sunlight or UV, we prepared three solutions where solution 2 was dominated by the Br8-11-PB-DiPhOBzs, along with Br5-8-PB-DiPhOBzs (solution 3) and Br4-6-PB-DiPhOBzs (solution 4). The in vitro metabolism of TeDB-DiPhOBz and PB-DiPhOBzs was investigated using harvested wild herring gull (Larus argentatus) and adult male Wister-Han rat liver microsomal assays. After a 90 min incubation period of solution 1 in gull or rat microsomal assays, there was no significant (p > 0.05) depletion of TeDB-DiPhOBz. OH-PB-DiPhOBz metabolites were detectable after gull and rat microsomal assay incubation with solutions 3 or 4, and showed clear species-specific differences. Also detected were two polybrominated hydroxylated metabolites having polybenzofuran structures. Overall, this study suggested that TeDB-DiPhOBz is slowly metabolized in vitro, and also indicated that if wild herring gulls are exposed (e.g., via the diet) to photolytic products of TeDB-DiPhOBz, OH-PB-DiPhOBz and other metabolites could be formed. OH-PH-DiPhOBz are likely precursors to MeO-PB-DiPhOBz contaminants that we reported previously in eggs of wild Great Lakes herring gulls.


Assuntos
Charadriiformes/metabolismo , Retardadores de Chama , Animais , Lagos , Fígado/química , Fotólise , Ratos
3.
Chemosphere ; 63(4): 562-9, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16297962

RESUMO

Polybrominated diphenyl ethers (PBDEs) have been used extensively as brominated flame retardants (BFRs) in textiles, upholstery and electronics. They are ubiquitous contaminants in wildlife and humans. A low concentration of nonabrominated diphenyl ethers (nonaBDEs) is present in commercial DecaBDE and they are also abiotic and biotic debromination products of decabromodiphenyl ether (BDE-209). The objective of the present work was to develop methods for synthesis of the three nonaBDEs, 2,2',3,3',4,4',5,5',6-nonabromodiphenyl ether (BDE-206), 2,2',3,3',4,4',5,6,6'-nonabromodiphenyl ether (BDE-207) and 2,2',3,3',4,5,5',6,6'-nonabromodiphenyl ether (BDE-208), with the intention of making them available as authentic standards for analytical, toxicological and stability studies, as well as studies regarding physical-chemical properties. Two methods were developed, one based on perbromination of phenoxyanilines and the other via reductive debromination of BDE-209 by sodium borohydride followed by chromatographic separation of the three nonaBDE isomers formed. An additional nonabrominated compound, 4'-chloro-2,2',3,3',4,5,5',6,6'-nonabromodiphenyl ether (Cl-BDE-208), was also synthesized in the present work. Cl-BDE-208, prepared by the perbromination of 4-chlorodiphenyl ether, may be used as an internal standard in analysis of highly brominated diphenyl ethers. BDE-206, BDE-207, BDE-208 and Cl-BDE-208 were characterized by 1H NMR, 13C NMR, electron ionization mass spectra and by their melting points. The structures of all three nonaBDEs have been characterized previously by X-ray crystallography.


Assuntos
Química Orgânica/métodos , Retardadores de Chama/síntese química , Éteres Fenílicos/síntese química , Bifenil Polibromatos/síntese química , Cristalografia por Raios X , Éteres Difenil Halogenados , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Éteres Fenílicos/química , Bifenil Polibromatos/química
4.
Chemosphere ; 74(3): 421-7, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18996562

RESUMO

Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants (BFRs) which have become widespread environmental pollutants due to their persistence and bioaccumulativeness. Pure authentic PBDE congeners are required for chemical analysis, assessments of their chemical/physical properties and toxicological studies. We here report an improved method for synthesis of authentic PBDE congeners applying bromophenols and symmetrical brominated diphenyliodonium salts as building blocks. Altogether, 13 PBDEs were synthesized of which seven are new. The improved coupling reaction between the bromophenol and the brominated diphenyliodonium salts resulted in enhanced yields for PBDEs substituted with more than six bromine atoms. Also, improvements in iodonium salt synthesis made it possible to synthesize symmetrical hexabromodiphenyliodonium salts for the first time, i.e. 2,2',3,3',4,4'-, 2,2',4,4',5,5'- and 2,2',4,4',6,6'-hexabromodiphenyliodonium salts and they made it possible to prepare octabrominated PBDEs via the actual coupling method. All synthesized compounds were characterized by (1)H NMR, (13)C NMR spectra and by their melting points. Also, all products except for the diphenyliodonium salts were characterized by mass spectra in electron ionization mode.


Assuntos
Compostos de Bifenilo/química , Retardadores de Chama/síntese química , Éteres Difenil Halogenados/síntese química , Hidrocarbonetos Bromados/química , Oniocompostos/química , Fenóis/química , Espectrometria de Massas por Ionização por Electrospray
5.
Environ Sci Pollut Res Int ; 16(3): 312-21, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19360447

RESUMO

BACKGROUND, AIM, AND SCOPE: Decabromodiphenyl ether (DecaBDE) is used as an additive flame retardant in polymers. It has become a ubiquitous environmental contaminant, particularly abundant in abiotic media, such as sediments, air, and dust, and also present in wildlife and in humans. The main DecaBDE constituent, perbrominated diphenyl ether (BDE-209), is susceptible to transformations as observed in experimental work. This work is aimed at identifying and assessing the relative amounts of products formed after UV irradiation of BDE-209. MATERIALS AND METHODS: BDE-209, dissolved in tetrahydrofuran (THF), methanol, or combinations of methanol/water, was exposed to UV light for 100 or 200 min. Samples were analyzed by gas chromatography/mass spectrometry (electron ionization) for polybrominated diphenyl ethers (PBDEs), dibenzofurans (PBDFs), methoxylated PBDEs, and phenolic PBDE products. RESULTS: The products formed were hexaBDEs to nonaBDEs, monoBDFs to pentaBDFs, and methoxylated tetraBDFs to pentaBDFs. The products found in the fraction containing halogenated phenols were assigned to be pentabromophenol, dihydroxytetrabromobenzene, dihydroxydibromodibenzofuran, dihydroxytribromodibenzofuran, and dihydroxytetrabromodibenzofuran. The PBDEs accounted for approximately 90% of the total amount of substances in each sample and the PBDFs for about 10%. DISCUSSION: BDE-209 is a source of PBDEs primarily present in OctaBDEs but also to some extent in PentaBDEs, both being commercial products now banned within the EU and in several states within the USA. It is notable that OH-PBDFs have not been identified or indicated in any of the photolysis studies performed to date. Formation of OH-PBDFs, however, may occur as pure radical reactions in the atmosphere. CONCLUSIONS: Photolysis of decaBDE yields a wide span of products, from nonaBDEs to hydroxylated bromobenzenes. It is evident that irradiation of decaBDE in water and methanol yields OH-PBDFs and MeO-PBDFs, respectively. BDE-202 (2,2',3,3',5,5',6,6'-octabromodiphenyl ether) is identified as a marker of BDE-209 photolysis. RECOMMENDATIONS AND PERSPECTIVES: BDE-209, the main constituent of DecaBDE, is primarily forming debrominated diphenyl ethers with higher persistence which are more bioaccumulative than the starting material when subjected to UV light. Hence, DecaBDE should be considered as a source of these PBDE congeners in the environment.


Assuntos
Poluentes Ambientais/química , Retardadores de Chama/análise , Éteres Difenil Halogenados/química , Fotólise
6.
Environ Sci Technol ; 41(21): 7459-63, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18044526

RESUMO

Polybrominated diphenyl ethers (PBDEs) are additive brominated flame retardants (BFRs), which have become widespread pollutants in abiotic and biotic environments including man. Tetra- to hexaBDEs and decaBDE are the most common environmental PBDE contaminants. Congeners of octabromodiphenyl ethers (octaBDEs) originate from used industrial OctaBDE mixtures and from transformation products of the high-volume industrial BFR mixture "DecaBDE", which most exclusively consists of perbrominated diphenyl ether (BDE-209). The objective of the present work was to develop methods for the synthesis of authentic octaBDE congeners in order to make them available as standards for analytical, toxicological, and stability studies, as well as studies concerning physical-chemical properties. The syntheses of six octaBDEs, 2,2',3,3',4,4',5,5'-octabromodiphenyl ether (BDE-194), 2,2',3,3',4,4',5,6'-octabromodiphenyl ether (BDE-196), 2,2',3,3',4,5,5',6-octabromodiphenyl ether (BDE-198), 2,2',3,3',4,5',6,6'-octabromodiphenyl ether (BDE-201), 2,2',3,3',5,5',6,6'-octabromodiphenyl ether (BDE-202), and 2,2',3,4,4',5,6,6'-octabromdipheny ether (BDE-204), are described, of which BDE-204 was prepared via two different pathways. Syntheses of BDE-198, BDE-201, BDE-202, and BDE-204 are based on octabromination of mono- or diaminodiphenyl ethers followed by diazotization and reduction of the amino group(s). BDE-194 and BDE-196 were prepared by bromination of 3,3',4,4',5,5'-hexabromodiphenyl ether (BDE-169) and 2,3,3',4,4',5',6-heptabromodiphenyl ether (BDE-191), respectively, and BDE-169 and BDE-191 were prepared from 4,4'-diaminodiphenyl ether and 3,4'-diamiodiphenyl ether, respectively. The synthesized PBDE congeners are described by 1H NMR, 13C NMR, electron ionization mass spectra, and their melting points.


Assuntos
Éteres Fenílicos/química , Éteres Fenílicos/síntese química , Bifenil Polibromatos/síntese química , Bromo/química , Retardadores de Chama/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA