RESUMO
The identification of circulating proteins associated with relapse in pediatric Hodgkin lymphoma (HL) may help develop predictive biomarkers. We previously identified a set of predictive biomarkers by difference gel electrophoresis. Here we used label-free quantitative liquid chromatography-mass spectrometry (LC-MS/MS) on plasma collected at diagnosis from 12 children (age 12-16 years) with nodular sclerosis HL, including six in whom the disease relapsed within 5 years of treatment in the LH2004 trial. Plasma proteins were pooled in groups of three, separately for non-relapsing and relapsing HL, and differentially abundant proteins between the two disease states were identified by LC-MS/MS in an explorative and validation design. Proteins with a fold change in abundance >1.2 or ≤0.8 were considered "differentially abundant". LC-MS/MS identified 60 and 32 proteins that were more abundant in non-relapsing and relapsing HL plasma, respectively, in the explorative phase; these numbers were 39 and 34 in the validation phase. In both analyses, 11 proteins were more abundant in non-relapsing HL (e.g., angiotensinogen, serum paraoxonase/arylesterase 1, transthyretin), including two previously identified by difference gel electrophoresis (antithrombin III and α-1-antitrypsin); seven proteins were more abundant in relapsing HL (e.g., fibronectin and thrombospondin-1), including two previously identified proteins (fibrinogen ß and γ chains). The differentially abundant proteins participated in numerous biological processes, which were manually grouped into 10 biological classes and 11 biological regulatory subclasses. The biological class Lipid metabolism, and its regulatory subclass, included angiotensinogen and serum paraoxonase/arylesterase 1 (more abundant in non-relapsing HL). The biological classes Immune system and Cell and extracellular matrix architecture included fibronectin and thrombospondin-1 (more abundant in relapsing HL). These findings deepen our understanding of the molecular scenario underlying responses to therapy and provide new evidence about these proteins as possible biomarkers of relapse in pediatric HL.
Assuntos
Doença de Hodgkin/sangue , Recidiva Local de Neoplasia/sangue , Adolescente , Biomarcadores Tumorais/sangue , Proteínas Sanguíneas/análise , Criança , Cromatografia Líquida , Feminino , Doença de Hodgkin/diagnóstico , Humanos , Masculino , Recidiva Local de Neoplasia/diagnóstico , Prognóstico , Proteômica , Espectrometria de Massas em TandemRESUMO
Estrogen receptor alpha (ERα) is often a primary target of endocrine disrupting chemicals (EDCs) and therefore several biochemical and cell-based assays for the detection of chemicals with estrogenic properties have been developed in the past. However, the current approaches are not suitable for the monitoring of pathway activation dynamics, and they are mostly based on expression constructs that lack physiological promoter regulation. We recently developed MCF7 fluorescent reporter cell lines of 3 different green fluorescent protein (GFP)-tagged ERα target genes: GREB1, PGR and TFF1. These reporters are under control of the full physiological promoter region and allow the monitoring of dynamic pro-proliferative pathway activation on a single cell level using a live-cell imaging set-up. In this study, we systematically characterized the response of these reporters to a full reference compound set of known estrogenic and non-estrogenic chemicals as defined by the Organization for Economic Co-Operation and Development (OECD). We linked activation of the pro-proliferative ERα pathway to a potential adverse outcome by additionally monitoring cell cycle progression and proliferation. The correct classification of the OECD reference compounds showed that our reporter platform has the same sensitivity and specificity as other validated artificial ERα pathway reporters, such as the ERα CALUX and VM7 Luc ER TA assay. By monitoring several key events (i.e. ER target activation, cell cycle progression and proliferation), and subsequently determining Point-of-Departure (POD) values, our reporter panel can be used in high-throughput testing for a physiologically more relevant, quantitative temporal endocrine modulation analysis to improve human carcinogen risk assessment.
Assuntos
Disruptores Endócrinos , Receptor alfa de Estrogênio , Bioensaio , Linhagem Celular , Disruptores Endócrinos/química , Disruptores Endócrinos/toxicidade , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios/toxicidade , Humanos , Organização para a Cooperação e Desenvolvimento EconômicoRESUMO
Autoimmune atrophic gastritis (AAG) is associated with an increased risk of certain types of gastric cancer (GC). Helicobacter pylori (H. pylori) infection may have a role in the induction and/or maintenance of AAG and GC. Toll-like receptors (TLR) are essential for H. pylori recognition and subsequent innate and adaptive immunity responses. This study therefore aimed to characterize TLR polymorphisms, and features of bacterial flagellin A in samples from patients with AAG (n = 67), GC (n = 114) and healthy donors (HD; n = 97). TLR5 rs5744174 C/C genotype was associated with GC, lower IgG anti H. pylori response and a higher H. pylori flagellin A abundance and motility. In a subset of patients with AAG, H. pylori strains showed a reduction of the flagellin A abundance and a moderate motility compared with strains from GC patients, a prerequisite for active colonization of the deeper layers of the mucosa, host immune response and inflammation. TLR9 rs5743836 T allele showed an association with serum gastrin G17. In conclusion, our study suggests that alterations of flaA protein, moderate motility in H. pylori and two polymorphisms in TLR5 and TLR9 may favor the onset of AAG and GC, at least in a subset of patients. These findings corroborate the function of pathogen-host cell interactions and responses, likely influencing the pathogenetic process.