Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36615532

RESUMO

Metal halide perovskites (MHPs), in particular lead-based perovskites, have earned recognized fame in several fields for their outstanding optoelectronic properties, including direct generation of free charge carriers, optimal ambipolar charge carrier transport properties, high absorption coefficient, point-defect tolerance, and compositional versatility. Nowadays, this class of materials represents a real and promising alternative to silicon for photovoltaic technologies. This worthy success led to a growing interest in the exploration of MHPs in other hot research fields, such as solar-driven photocatalytic water splitting towards hydrogen production. Nevertheless, many of these perovskites show air and moisture instability problems that considerably hinder their practical application for photocatalytic water splitting. Moreover, if chemical instability is a problem that can be in part mitigated by the optimization of the chemical composition and crystal structure, the presence of lead represents a real problem for the practical application of MHPs in commercial devices due to environmental and healthcare issues. To successfully overcome these problems, lead-free metal halide perovskites (LFMHPs) have gained increasing interest thanks to their optoelectronic properties, comparable to lead-based materials, and their more eco-friendly nature. Among all the lead-free perovskite alternatives, this mini-review considers bismuth-based perovskites and perovskite derivatives with a specific focus on solar-driven photocatalysis application for H2 evolution. Special attention is dedicated to the structure and composition of the different materials and to the advantage of heterojunction engineering and the relative impact on the photocatalytic process.

2.
ChemSusChem ; : e202400918, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39206571

RESUMO

Carbon nitride compounds (CNCs) in the form of graphitic carbon nitride (g-C3N4) and poly(heptazine imide) were synthesized using different metal chloride salts (MClx), i.e., NaCl, KCl and CaCl2, as sacrificial templates and by varying the MClx to melamine molar ratios. A systematic study of their photocatalytic activity for H2 production in relation to the physicochemical, morphological, and optical properties was carried out. Each sample was tested achieving the highest hydrogen evolution rates of about 7660 µmol g-1 h-1, 5380 µmol g-1 h-1 and 3140 µmol g-1 h-1 using CaCl2, KCl, and NaCl, respectively. This work demonstrates how the synthesis of CNCs with different MClx leads to the production of high-performance photocatalysts due to a combination of factors as the formation of vacancies or cyano groups, a shift in the optical threshold and tuning of micro(nano)structure.  The results demonstrate that, when CaCl2 is used as a sacrificial template, porous and exfoliated g-C3N4 nanosheets are formed leading to hydrogen productions which outperform most of the previously reported g-C3N4 prepared using a single synthetic step.

3.
Cell Rep Phys Sci ; 4(1): 101214, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-37292086

RESUMO

There is increasing interest in the role of metal halide perovskites for heterogeneous catalysis. Here, we report a Ge-based 2D perovskite material that shows intrinsic water stability realized through organic cation engineering. Incorporating 4-phenylbenzilammonium (PhBz) we demonstrate, by means of extended experimental and computational results, that PhBz2GeBr4 and PhBz2GeI4 can achieve relevant air and water stability. The creation of composites embedding graphitic carbon nitride (g-C3N4) allows a proof of concept for light-induced hydrogen evolution in an aqueous environment by 2D Ge-based perovskites thanks to the effective charge transfer at the heterojunction between the two semiconductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA