RESUMO
OBJECTIVE: To update the evidence on the effectiveness of exercise interventions to prevent episodes of neck pain. DESIGN: Systematic review with meta-analysis. LITERATURE SEARCH: MEDLINE, Embase, CENTRAL, CINAHL, SPORTDiscus, PEDro, and trial registries from inception to December 2, 2022. Forward and backward citation searches. STUDY SELECTION CRITERIA: Randomized controlled trials (RCTs) that enrolled adults without neck pain at baseline and compared exercise interventions to no intervention, placebo/sham, attention control, or minimal intervention. Military populations and astronauts were excluded. DATA SYNTHESIS: Random-effects meta-analysis. Risk of bias was assessed using the Cochrane RoB 2 tool. The certainty of evidence was judged according to the GRADE approach. RESULTS: Of 4703 records screened, 5 trials (1722 participants at baseline) were included and eligible for meta-analysis. Most (80%) participants were office workers. Risk of bias was rated as some concerns for 2 trials and high for 3 trials. There was moderate-certainty evidence that exercise interventions probably reduce the risk of a new episode of neck pain (OR, 0.49; 95% confidence interval: 0.31, 0.76) compared to no or minimal intervention in the short-term (≤12 months). The results were not robust to sensitivity analyses for missing outcome data. CONCLUSION: There was moderate-certainty evidence supporting exercise interventions for reducing the risk for an episode of neck pain in the next 12 months. The clinical significance of the effect is unclear. J Orthop Sports Phys Ther 2023;53(10):1-16. Epub: 8 September 2023. doi:10.2519/jospt.2023.12063.
Assuntos
Exercício Físico , Cervicalgia , Adulto , Humanos , Cervicalgia/prevenção & controle , Ensaios Clínicos Controlados Aleatórios como Assunto , Manejo da Dor , Terapia por ExercícioRESUMO
BACKGROUND: Protein alignments are an essential tool for many bioinformatics analyses. While sequence alignments are accurate for proteins of high sequence similarity, they become unreliable as they approach the so-called 'twilight zone' where sequence similarity gets indistinguishable from random. For such distant pairs, structure alignment is of much better quality. Nevertheless, sequence alignment is the only choice in the majority of cases where structural data is not available. This situation demands development of methods that extend the applicability of accurate sequence alignment to distantly related proteins. RESULTS: We develop a sequence alignment method that combines the prediction of a structural profile based on the protein's sequence with the alignment of that profile using our recently published alignment tool SABERTOOTH. In particular, we predict the contact vector of protein structures using an artificial neural network based on position-specific scoring matrices generated by PSI-BLAST and align these predicted contact vectors. The resulting sequence alignments are assessed using two different tests: First, we assess the alignment quality by measuring the derived structural similarity for cases in which structures are available. In a second test, we quantify the ability of the significance score of the alignments to recognize structural and evolutionary relationships. As a benchmark we use a representative set of the SCOP (structural classification of proteins) database, with similarities ranging from closely related proteins at SCOP family level, to very distantly related proteins at SCOP fold level. Comparing these results with some prominent sequence alignment tools, we find that SABERTOOTH produces sequence alignments of better quality than those of Clustal W, T-Coffee, MUSCLE, and PSI-BLAST. HHpred, one of the most sophisticated and computationally expensive tools available, outperforms our alignment algorithm at family and superfamily levels, while the use of SABERTOOTH is advantageous for alignments at fold level. Our alignment scheme will profit from future improvements of structural profiles prediction. CONCLUSIONS: We present the automatic sequence alignment tool SABERTOOTH that computes pairwise sequence alignments of very high quality. SABERTOOTH is especially advantageous when applied to alignments of remotely related proteins. The source code is available at http://www.fkp.tu-darmstadt.de/sabertooth_project/, free for academic users upon request.
Assuntos
Estrutura Terciária de Proteína , Proteínas/química , Alinhamento de Sequência/métodos , Software , Dobramento de Proteína , Análise de Sequência de Proteína/métodosRESUMO
The complexity of protein structures calls for simplified representations of their topology. The simplest possible mathematical description of a protein structure is a one-dimensional profile representing, for instance, buriedness or secondary structure. This kind of representation has been introduced for studying the sequence to structure relationship, with applications to fold recognition. Here we define the effective connectivity profile (EC), a network theoretical profile that self-consistently represents the network structure of the protein contact matrix. The EC profile makes mathematically explicit the relationship between protein structure and protein sequence, because it allows predicting the average hydrophobicity profile (HP) and the distributions of amino acids at each site for families of homologous proteins sharing the same structure. In this sense, the EC provides an analytic solution to the statistical inverse folding problem, which consists in finding the statistical properties of the set of sequences compatible with a given structure. We tested these predictions with simulations of the structurally constrained neutral (SCN) model of protein evolution with structure conservation, for single- and multi-domain proteins, and for a wide range of mutation processes, the latter producing sequences with very different hydrophobicity profiles, finding that the EC-based predictions are accurate even when only one sequence of the family is known. The EC profile is very significantly correlated with the HP for sequence-structure pairs in the PDB as well. The EC profile generalizes the properties of previously introduced structural profiles to modular proteins such as multidomain chains, and its correlation with the sequence profile is substantially improved with respect to the previously defined profiles, particularly for long proteins. Furthermore, the EC profile has a dynamic interpretation, since the EC components are strongly inversely related with the temperature factors measured in X-ray experiments, meaning that positions with large EC component are more strongly constrained in their equilibrium dynamics. Last, the EC profile allows to define a natural measure of modularity that correlates with the number of domains composing the protein, suggesting its application for domain decomposition. Finally, we show that structurally similar proteins have similar EC profiles, so that the similarity between aligned EC profiles can be used as a structure similarity measure, a property that we have recently applied for protein structure alignment. The code for computing the EC profile is available upon request writing to ubastolla@cbm.uam.es, and the structural profiles discussed in this article can be downloaded from the SLOTH webserver http://www.fkp.tu-darmstadt.de/SLOTH/.
Assuntos
Proteínas/química , Sequência de Aminoácidos , Aminoácidos/química , Simulação por Computador , Sequência Conservada , Bases de Dados de Proteínas , Evolução Molecular , Interações Hidrofóbicas e Hidrofílicas , TemperaturaRESUMO
BACKGROUND: The task of computing highly accurate structural alignments of proteins in very short computation time is still challenging. This is partly due to the complexity of protein structures. Therefore, instead of manipulating coordinates directly, matrices of inter-atomic distances, sets of vectors between protein backbone atoms, and other reduced representations are used. These decrease the effort of comparing large sets of coordinates, but protein structural alignment still remains computationally expensive. RESULTS: We represent the topology of a protein structure through a structural profile that expresses the global effective connectivity of each residue. We have shown recently that this representation allows explicitly expressing the relationship between protein structure and protein sequence. Based on this very condensed vectorial representation, we develop a structural alignment framework that recognizes structural similarities with accuracy comparable to established alignment tools. Furthermore, our algorithm has favourable scaling of computation time with chain length. Since the algorithm is independent of the details of the structural representation, our framework can be applied to sequence-to-sequence and sequence-to-structure comparison within the same setup, and it is therefore more general than other existing tools. CONCLUSION: We show that protein comparison based on a vectorial representation of protein structure performs comparably to established algorithms based on coordinates. The conceptually new approach presented in this publication might assist to unify the view on protein comparison by unifying structure and sequence descriptions in this context. The framework discussed here is implemented in the 'SABERTOOTH' alignment server, freely accessible at http://www.fkp.tu-darmstadt.de/sabertooth/.
Assuntos
Proteínas/química , Análise de Sequência de Proteína/métodos , Software , Homologia Estrutural de Proteína , Sequência de Aminoácidos , Estrutura Secundária de Proteína , Proteínas/genética , Alinhamento de Sequência/métodosRESUMO
Here we perform a large-scale study of the structural properties and the expression of proteins that constitute the human Centrosome. Centrosomal proteins tend to be larger than generic human proteins (control set), since their genes contain in average more exons (20.3 versus 14.6). They are rich in predicted disordered regions, which cover 57% of their length, compared to 39% in the general human proteome. They also contain several regions that are dually predicted to be disordered and coiled-coil at the same time: 55 proteins (15%) contain disordered and coiled-coil fragments that cover more than 20% of their length. Helices prevail over strands in regions homologous to known structures (47% predicted helical residues against 17% predicted as strands), and even more in the whole centrosomal proteome (52% against 7%), while for control human proteins 34.5% of the residues are predicted as helical and 12.8% are predicted as strands. This difference is mainly due to residues predicted as disordered and helical (30% in centrosomal and 9.4% in control proteins), which may correspond to alpha-helix forming molecular recognition features (α-MoRFs). We performed expression assays for 120 full-length centrosomal proteins and 72 domain constructs that we have predicted to be globular. These full-length proteins are often insoluble: Only 39 out of 120 expressed proteins (32%) and 19 out of 72 domains (26%) were soluble. We built or retrieved structural models for 277 out of 361 human proteins whose centrosomal localization has been experimentally verified. We could not find any suitable structural template with more than 20% sequence identity for 84 centrosomal proteins (23%), for which around 74% of the residues are predicted to be disordered or coiled-coils. The three-dimensional models that we built are available at http://ub.cbm.uam.es/centrosome/models/index.php.