Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genome Res ; 33(10): 1649-1661, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37699659

RESUMO

The location of nucleosomes in the human genome determines the primary chromatin structure and regulates access to regulatory regions. However, genome-wide information on deregulated nucleosome occupancy and its implications in primary cancer cells is scarce. Here, we conducted a genome-wide comparison of high-resolution nucleosome maps in peripheral blood B cells from patients with chronic lymphocytic leukemia (CLL) and healthy individuals at single-base-pair resolution. Our investigation uncovered significant changes of nucleosome positioning in CLL. Globally, the spacing between nucleosomes-the nucleosome repeat length (NRL)-is shortened in CLL. This effect is stronger in the more aggressive IGHV-unmutated CLL subtype than in the IGHV-mutated CLL subtype. Changes in nucleosome occupancy at specific sites are linked to active chromatin remodeling and reduced DNA methylation. Nucleosomes lost or gained in CLL marks differential binding of 3D chromatin organizers such as CTCF as well as immune response-related transcription factors and delineated mechanisms of epigenetic deregulation. The principal component analysis of nucleosome occupancy in cancer-specific regions allowed the classification of samples between cancer subtypes and normal controls. Furthermore, patients could be better assigned to CLL subtypes according to differential nucleosome occupancy than based on DNA methylation or gene expression. Thus, nucleosome positioning constitutes a novel readout to dissect molecular mechanisms of disease progression and to stratify patients. Furthermore, we anticipate that the global nucleosome repositioning detected in our study, such as changes in the NRL, can be exploited for liquid biopsy applications based on cell-free DNA to stratify patients and monitor disease progression.


Assuntos
Leucemia Linfocítica Crônica de Células B , Nucleossomos , Humanos , Nucleossomos/genética , Leucemia Linfocítica Crônica de Células B/genética , Cromatina , Fatores de Transcrição/metabolismo , Progressão da Doença
2.
Chromosoma ; 131(1-2): 19-28, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35061087

RESUMO

Nucleosome positioning is involved in many gene regulatory processes happening in the cell, and it may change as cells differentiate or respond to the changing microenvironment in a healthy or diseased organism. One important implication of nucleosome positioning in clinical epigenetics is its use in the "nucleosomics" analysis of cell-free DNA (cfDNA) for the purpose of patient diagnostics in liquid biopsies. The rationale for this is that the apoptotic nucleases that digest chromatin of the dying cells mostly cut DNA between nucleosomes. Thus, the short pieces of DNA in body fluids reflect the positions of nucleosomes in the cells of origin. Here, we report a systematic nucleosomics database - NucPosDB - curating published nucleosome positioning datasets in vivo as well as datasets of sequenced cell-free DNA (cfDNA) that reflect nucleosome positioning in situ in the cells of origin. Users can select subsets of the database by a number of criteria and then obtain raw or processed data. NucPosDB also reports the originally determined regions with stable nucleosome occupancy across several individuals with a given condition. An additional section provides a catalogue of computational tools for the analysis of nucleosome positioning or cfDNA experiments and theoretical algorithms for the prediction of nucleosome positioning preferences from DNA sequence. We provide an overview of the field, describe the structure of the database in this context, and demonstrate data variability using examples of different medical conditions. NucPosDB is useful both for the analysis of fundamental gene regulation processes and the training of computational models for patient diagnostics based on cfDNA. The database currently curates ~ 400 publications on nucleosome positioning in cell lines and in situ as well as cfDNA from > 10,000 patients and healthy volunteers. For open-access cfDNA datasets as well as key MNase-seq datasets in human cells, NucPosDB allows downloading processed mapped data in addition to the regions with stable nucleosome occupancy. NucPosDB is available at https://generegulation.org/nucposdb/ .


Assuntos
Ácidos Nucleicos Livres , Nucleossomos , Ácidos Nucleicos Livres/genética , Cromatina , Montagem e Desmontagem da Cromatina , DNA/metabolismo , Humanos , Nucleossomos/genética
3.
EMBO Rep ; 22(5): e52612, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33949091

RESUMO

Many scientists, confined to home office by COVID-19, have been gathering in online communities, which could become viable alternatives to physical meetings and conferences.


Assuntos
COVID-19 , Pandemias , Humanos , SARS-CoV-2
4.
Genome Res ; 29(5): 750-761, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30948436

RESUMO

Coordinated changes of DNA (de)methylation, nucleosome positioning, and chromatin binding of the architectural protein CTCF play an important role for establishing cell-type-specific chromatin states during differentiation. To elucidate molecular mechanisms that link these processes, we studied the perturbed DNA modification landscape in mouse embryonic stem cells (ESCs) carrying a double knockout (DKO) of the Tet1 and Tet2 dioxygenases. These enzymes are responsible for the conversion of 5-methylcytosine (5mC) into its hydroxymethylated (5hmC), formylated (5fC), or carboxylated (5caC) forms. We determined changes in nucleosome positioning, CTCF binding, DNA methylation, and gene expression in DKO ESCs and developed biophysical models to predict differential CTCF binding. Methylation-sensitive nucleosome repositioning accounted for a significant portion of CTCF binding loss in DKO ESCs, whereas unmethylated and nucleosome-depleted CpG islands were enriched for CTCF sites that remained occupied. A number of CTCF sites also displayed direct correlations with the CpG modification state: CTCF was preferentially lost from sites that were marked with 5hmC in wild-type (WT) cells but not from 5fC-enriched sites. In addition, we found that some CTCF sites can act as bifurcation points defining the differential methylation landscape. CTCF loss from such sites, for example, at promoters, boundaries of chromatin loops, and topologically associated domains (TADs), was correlated with DNA methylation/demethylation spreading and can be linked to down-regulation of neighboring genes. Our results reveal a hierarchical interplay between cytosine modifications, nucleosome positions, and DNA sequence that determines differential CTCF binding and regulates gene expression.


Assuntos
Metilação de DNA , Proteínas de Ligação a DNA/genética , Epigênese Genética , Células-Tronco Embrionárias Murinas/enzimologia , Proteínas Proto-Oncogênicas/genética , 5-Metilcitosina/química , Animais , Fator de Ligação a CCCTC/metabolismo , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Elementos Isolantes/genética , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Embrionárias Murinas/metabolismo , Nucleossomos/enzimologia , Proteínas Proto-Oncogênicas/metabolismo
5.
Nucleic Acids Res ; 47(21): 11181-11196, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31665434

RESUMO

The CCCTC-binding factor (CTCF) organises the genome in 3D through DNA loops and in 1D by setting boundaries isolating different chromatin states, but these processes are not well understood. Here we investigate chromatin boundaries in mouse embryonic stem cells, defined by the regions with decreased Nucleosome Repeat Length (NRL) for ∼20 nucleosomes near CTCF sites, affecting up to 10% of the genome. We found that the nucleosome-depleted region (NDR) near CTCF is asymmetrically located >40 nucleotides 5'-upstream from the centre of CTCF motif. The strength of CTCF binding to DNA and the presence of cohesin is correlated with the decrease of NRL near CTCF, and anti-correlated with the level of asymmetry of the nucleosome array. Individual chromatin remodellers have different contributions, with Snf2h having the strongest effect on the NRL decrease near CTCF and Chd4 playing a major role in the symmetry breaking. Upon differentiation, a subset of preserved, common CTCF sites maintains asymmetric nucleosome pattern and small NRL. The sites which lost CTCF upon differentiation are characterized by nucleosome rearrangement 3'-downstream, with unchanged NDR 5'-upstream of CTCF motifs. Boundaries of topologically associated chromatin domains frequently contain several inward-oriented CTCF motifs whose effects, described above, add up synergistically.


Assuntos
Fator de Ligação a CCCTC/fisiologia , Montagem e Desmontagem da Cromatina/fisiologia , Cromatina/química , Cromatina/metabolismo , Nucleossomos/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Diferenciação Celular/genética , Cromatina/genética , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica
6.
Mol Syst Biol ; 15(5): e8339, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118277

RESUMO

In chronic lymphocytic leukemia (CLL), a diverse set of genetic mutations is embedded in a deregulated epigenetic landscape that drives cancerogenesis. To elucidate the role of aberrant chromatin features, we mapped DNA methylation, seven histone modifications, nucleosome positions, chromatin accessibility, binding of EBF1 and CTCF, as well as the transcriptome of B cells from CLL patients and healthy donors. A globally increased histone deacetylase activity was detected and half of the genome comprised transcriptionally downregulated partially DNA methylated domains demarcated by CTCF CLL samples displayed a H3K4me3 redistribution and nucleosome gain at promoters as well as changes of enhancer activity and enhancer linkage to target genes. A DNA binding motif analysis identified transcription factors that gained or lost binding in CLL at sites with aberrant chromatin features. These findings were integrated into a gene regulatory enhancer containing network enriched for B-cell receptor signaling pathway components. Our study predicts novel molecular links to targets of CLL therapies and provides a valuable resource for further studies on the epigenetic contribution to the disease.


Assuntos
Cromatina/química , Regulação Leucêmica da Expressão Gênica , Redes Reguladoras de Genes , Histonas/química , Leucemia Linfocítica Crônica de Células B/genética , Idoso , Motivos de Aminoácidos , Sítios de Ligação , Fator de Ligação a CCCTC/genética , DNA/química , Metilação de DNA , Regulação para Baixo , Elementos Facilitadores Genéticos , Histona Desacetilases/genética , Humanos , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Ligação Proteica , Transativadores/genética
7.
Brief Bioinform ; 17(5): 745-57, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26411474

RESUMO

Nucleosome positioning is an important process required for proper genome packing and its accessibility to execute the genetic program in a cell-specific, timely manner. In the recent years hundreds of papers have been devoted to the bioinformatics, physics and biology of nucleosome positioning. The purpose of this review is to cover a practical aspect of this field, namely, to provide a guide to the multitude of nucleosome positioning resources available online. These include almost 300 experimental datasets of genome-wide nucleosome occupancy profiles determined in different cell types and more than 40 computational tools for the analysis of experimental nucleosome positioning data and prediction of intrinsic nucleosome formation probabilities from the DNA sequence. A manually curated, up to date list of these resources will be maintained at http://generegulation.info.


Assuntos
Nucleossomos , Sequência de Bases , Biologia Computacional , Genoma , Humanos , Regiões Promotoras Genéticas
8.
BMC Genomics ; 18(1): 158, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28196481

RESUMO

BACKGROUND: Biomedical applications of high-throughput sequencing methods generate a vast amount of data in which numerous chromatin features are mapped along the genome. The results are frequently analysed by creating binary data sets that link the presence/absence of a given feature to specific genomic loci. However, the nucleosome occupancy or chromatin accessibility landscape is essentially continuous. It is currently a challenge in the field to cope with continuous distributions of deep sequencing chromatin readouts and to integrate the different types of discrete chromatin features to reveal linkages between them. RESULTS: Here we introduce the NucTools suite of Perl scripts as well as MATLAB- and R-based visualization programs for a nucleosome-centred downstream analysis of deep sequencing data. NucTools accounts for the continuous distribution of nucleosome occupancy. It allows calculations of nucleosome occupancy profiles averaged over several replicates, comparisons of nucleosome occupancy landscapes between different experimental conditions, and the estimation of the changes of integral chromatin properties such as the nucleosome repeat length. Furthermore, NucTools facilitates the annotation of nucleosome occupancy with other chromatin features like binding of transcription factors or architectural proteins, and epigenetic marks like histone modifications or DNA methylation. The applications of NucTools are demonstrated for the comparison of several datasets for nucleosome occupancy in mouse embryonic stem cells (ESCs) and mouse embryonic fibroblasts (MEFs). CONCLUSIONS: The typical workflows of data processing and integrative analysis with NucTools reveal information on the interplay of nucleosome positioning with other features such as for example binding of a transcription factor CTCF, regions with stable and unstable nucleosomes, and domains of large organized chromatin K9me2 modifications (LOCKs). As potential limitations and problems we discuss how inter-replicate variability of MNase-seq experiments can be addressed.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Cromatina/genética , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Software , Cromatina/metabolismo , Análise por Conglomerados , Análise de Sequência de DNA
9.
Genome Res ; 24(8): 1285-95, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24812327

RESUMO

During differentiation of embryonic stem cells, chromatin reorganizes to establish cell type-specific expression programs. Here, we have dissected the linkages between DNA methylation (5mC), hydroxymethylation (5hmC), nucleosome repositioning, and binding of the transcription factor CTCF during this process. By integrating MNase-seq and ChIP-seq experiments in mouse embryonic stem cells (ESC) and their differentiated counterparts with biophysical modeling, we found that the interplay between these factors depends on their genomic context. The mostly unmethylated CpG islands have reduced nucleosome occupancy and are enriched in cell type-independent binding sites for CTCF. The few remaining methylated CpG dinucleotides are preferentially associated with nucleosomes. In contrast, outside of CpG islands most CpGs are methylated, and the average methylation density oscillates so that it is highest in the linker region between nucleosomes. Outside CpG islands, binding of TET1, an enzyme that converts 5mC to 5hmC, is associated with labile, MNase-sensitive nucleosomes. Such nucleosomes are poised for eviction in ESCs and become stably bound in differentiated cells where the TET1 and 5hmC levels go down. This process regulates a class of CTCF binding sites outside CpG islands that are occupied by CTCF in ESCs but lose the protein during differentiation. We rationalize this cell type-dependent targeting of CTCF with a quantitative biophysical model of competitive binding with the histone octamer, depending on the TET1, 5hmC, and 5mC state.


Assuntos
Metilação de DNA , Nucleossomos/metabolismo , Proteínas Repressoras/metabolismo , Animais , Fator de Ligação a CCCTC , Diferenciação Celular , Células Cultivadas , Montagem e Desmontagem da Cromatina , Ilhas de CpG , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/fisiologia , Camundongos da Linhagem 129 , Ligação Proteica , Proteínas Proto-Oncogênicas/metabolismo
11.
PLoS Comput Biol ; 10(7): e1003698, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24992723

RESUMO

The nucleosome repeat length (NRL) is an integral chromatin property important for its biological functions. Recent experiments revealed several conflicting trends of the NRL dependence on the concentrations of histones and other architectural chromatin proteins, both in vitro and in vivo, but a systematic theoretical description of NRL as a function of DNA sequence and epigenetic determinants is currently lacking. To address this problem, we have performed an integrative biophysical and bioinformatics analysis in species ranging from yeast to frog to mouse where NRL was studied as a function of various parameters. We show that in simple eukaryotes such as yeast, a lower limit for the NRL value exists, determined by internucleosome interactions and remodeler action. For higher eukaryotes, also the upper limit exists since NRL is an increasing but saturating function of the linker histone concentration. Counterintuitively, smaller H1 variants or non-histone architectural proteins can initiate larger effects on the NRL due to entropic reasons. Furthermore, we demonstrate that different regimes of the NRL dependence on histone concentrations exist depending on whether DNA sequence-specific effects dominate over boundary effects or vice versa. We consider several classes of genomic regions with apparently different regimes of the NRL variation. As one extreme, our analysis reveals that the period of oscillations of the nucleosome density around bound RNA polymerase coincides with the period of oscillations of positioning sites of the corresponding DNA sequence. At another extreme, we show that although mouse major satellite repeats intrinsically encode well-defined nucleosome preferences, they have no unique nucleosome arrangement and can undergo a switch between two distinct types of nucleosome positioning.


Assuntos
Cromatina/química , DNA/química , Histonas/química , Nucleossomos/química , Nucleossomos/metabolismo , Animais , Anuros , Cromatina/metabolismo , Biologia Computacional , DNA/metabolismo , Histonas/metabolismo , Camundongos , Modelos Biológicos , Leveduras
12.
Brief Bioinform ; 13(2): 187-201, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21737419

RESUMO

Current high-throughput experiments already generate enough data for retrieving the DNA sequence-dependent binding affinities of transcription factors (TF) and other chromosomal proteins throughout the complete genome. However, the reverse task of calculating binding maps in a chromatin context for a given set of concentrations and TF affinities appears to be even more challenging and computationally demanding. The problem can be addressed by considering the DNA sequence as a one-dimensional lattice with units of one or more base pairs. To calculate protein occupancies in chromatin, one needs to consider the competition of TF and histone octamers for binding sites as well as the partial unwrapping of nucleosomal DNA. Here, we consider five different classes of algorithms to compute binding maps that include the binary variable, combinatorial, sequence generating function, transfer matrix and dynamic programming approaches. The calculation time of the binary variable algorithm scales exponentially with DNA length, which limits its use to the analysis of very small genomic regions. For regulatory regions with many overlapping binding sites, potentially applicable algorithms reduce either to the transfer matrix or dynamic programming approach. In addition to the recently proposed transfer matrix formalism for TF access to the nucleosomal organized DNA, we develop here a dynamic programming algorithm that accounts for this feature. In the absence of nucleosomes, dynamic programming outperforms the transfer matrix approach, but the latter is faster when nucleosome unwrapping has to be considered. Strategies are discussed that could further facilitate calculations to allow computing genome-wide TF binding maps.


Assuntos
Algoritmos , Cromatina/química , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Sítios de Ligação , Cromatina/metabolismo , DNA/química , DNA/metabolismo , Conformação de Ácido Nucleico , Nucleossomos/metabolismo
13.
Bioinformatics ; 29(19): 2380-6, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23846748

RESUMO

MOTIVATION: Recent experimental advancements allow determining positions of nucleosomes for complete genomes. However, the resulting nucleosome occupancy maps are averages of heterogeneous cell populations. Accordingly, they represent a snapshot of a dynamic ensemble at a single time point with an overlay of many configurations from different cells. To study the organization of nucleosomes along the genome and to understand the mechanisms of nucleosome translocation, it is necessary to retrieve features of specific conformations from the population average. RESULTS: Here, we present a method for identifying non-overlapping nucleosome configurations that combines binary-variable analysis and a Monte Carlo approach with a simulated annealing scheme. In this manner, we obtain specific nucleosome configurations and optimized solutions for the complex positioning patterns from experimental data. We apply the method to compare nucleosome positioning at transcription factor binding sites in different mouse cell types. Our method can model nucleosome translocations at regulatory genomic elements and generate configurations for simulations of the spatial folding of the nucleosome chain. AVAILABILITY: Source code, precompiled binaries, test data and a web-based test installation are freely available at http://bioinformatics.fh-stralsund.de/nucpos/


Assuntos
Método de Monte Carlo , Nucleossomos/química , Animais , Sítios de Ligação , Diferenciação Celular , Camundongos , Nucleossomos/metabolismo , Ligação Proteica/genética , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
14.
Phys Biol ; 11(4): 044001, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25078656

RESUMO

Within a simple biophysical model we describe the effect of electrostatic binding of H1 histone proteins on the nucleosome repeat length in chromatin. The length of wrapped DNA optimizes its binding energy to the histone core and the elastic energy penalty of DNA wrapping. The magnitude of the effect predicted from our model is in agreement with the systematic experimental data on the linear variation of nucleosome repeat lengths with H1/nucleosome ratio (Woodcock C L et al 2006 Chromos. Res. 14 17-25). We compare our model to the data for different cell types and organisms, with a widely varying ratio of bound H1 histones per nucleosome. We underline the importance of this non-specific histone-DNA charge-balance mechanism in regulating the positioning of nucleosomes and the degree of compaction of chromatin fibers in eukaryotic cells.


Assuntos
Histonas/metabolismo , Nucleossomos/metabolismo , Animais , Fenômenos Biofísicos , Humanos , Modelos Biológicos , Ligação Proteica , Eletricidade Estática
15.
Methods ; 62(1): 26-38, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23523656

RESUMO

The eukaryotic genome is organized in a chain of nucleosomes that consist of 145-147 bp of DNA wrapped around a histone octamer protein core. Binding of transcription factors (TF) to nucleosomal DNA is frequently impeded, which makes it a challenging task to calculate TF occupancy at a given regulatory genomic site for predicting gene expression. Here, we review methods to calculate TF binding to DNA in the presence of nucleosomes. The main theoretical problems are (i) the computation speed that is becoming a bottleneck when partial unwrapping of DNA from the nucleosome is considered, (ii) the perturbation of the binding equilibrium by the activity of ATP-dependent chromatin remodelers, which translocate nucleosomes along the DNA, and (iii) the model parameterization from high-throughput sequencing data and fluorescence microscopy experiments in living cells. We discuss strategies that address these issues to efficiently compute transcription factor binding in chromatin.


Assuntos
DNA/genética , Expressão Gênica , Modelos Genéticos , Nucleossomos , Fatores de Transcrição/genética , Iniciação da Transcrição Genética , Leveduras/genética , Animais , Sítios de Ligação , Montagem e Desmontagem da Cromatina , DNA/química , DNA/metabolismo , Humanos , Conformação de Ácido Nucleico , Ligação Proteica , Termodinâmica , Fatores de Transcrição/metabolismo , Leveduras/metabolismo
16.
Elife ; 122024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38293962

RESUMO

Wrapping of DNA into nucleosomes restricts accessibility to DNA and may affect the recognition of binding motifs by transcription factors. A certain class of transcription factors, the pioneer transcription factors, can specifically recognize their DNA binding sites on nucleosomes, initiate local chromatin opening, and facilitate the binding of co-factors in a cell-type-specific manner. For the majority of human pioneer transcription factors, the locations of their binding sites, mechanisms of binding, and regulation remain unknown. We have developed a computational method to predict the cell-type-specific ability of transcription factors to bind nucleosomes by integrating ChIP-seq, MNase-seq, and DNase-seq data with details of nucleosome structure. We have demonstrated the ability of our approach in discriminating pioneer from canonical transcription factors and predicted new potential pioneer transcription factors in H1, K562, HepG2, and HeLa-S3 cell lines. Last, we systematically analyzed the interaction modes between various pioneer transcription factors and detected several clusters of distinctive binding sites on nucleosomal DNA.


Assuntos
Nucleossomos , Fatores de Transcrição , Humanos , Nucleossomos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cromatina , DNA/metabolismo , Sítios de Ligação
17.
Aging Cell ; 23(5): e14100, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38337183

RESUMO

Aging induces systematic changes in the distribution of nucleosomes, which affect gene expression programs. Here we reconstructed nucleosome maps based on cell-free DNA (cfDNA) extracted from blood plasma using four cohorts of people of different ages. We show that nucleosomes tend to be separated by larger genomic distances in older people, and age correlates with the nucleosome repeat length (NRL). Furthermore, we developed the first aging clock based on cfDNA nucleosomics. Machine learning based on cfDNA distance distributions allowed predicting person's age with the median absolute error of 3-3.5 years.


Assuntos
Envelhecimento , Ácidos Nucleicos Livres , Nucleossomos , Nucleossomos/metabolismo , Nucleossomos/genética , Humanos , Envelhecimento/genética , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/genética , Idoso , Idoso de 80 Anos ou mais , Pessoa de Meia-Idade , Masculino , Feminino , Adulto
18.
bioRxiv ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38895436

RESUMO

Background: Profiling circulating cell-free DNA (cfDNA) has become a fundamental practice in cancer medicine, but the effectiveness of cfDNA at elucidating tumor-derived molecular features has not been systematically compared to standard single-lesion tumor biopsies in prospective cohorts of patients. The use of plasma instead of tissue to guide therapy is particularly attractive for patients with small cell lung cancer (SCLC), a cancer whose aggressive clinical course making it exceedingly challenging to obtain tumor biopsies. Methods: Here, a prospective cohort of 49 plasma samples obtained before, during, and after treatment from 20 patients with recurrent SCLC, we study cfDNA low pass whole genome (0.1X coverage) and exome (130X) sequencing in comparison with time-point matched tumor, characterized using exome and transcriptome sequencing. Results: Direct comparison of cfDNA versus tumor biopsy reveals that cfDNA not only mirrors the mutation and copy number landscape of the corresponding tumor but also identifies clinically relevant resistance mechanisms and cancer driver alterations not found in matched tumor biopsies. Longitudinal cfDNA analysis reliably tracks tumor response, progression, and clonal evolution. Genomic sequencing coverage of plasma DNA fragments around transcription start sites shows distinct treatment-related changes and captures the expression of key transcription factors such as NEUROD1 and REST in the corresponding SCLC tumors, allowing prediction of SCLC neuroendocrine phenotypes and treatment responses. Conclusions: These findings have important implications for non-invasive stratification and subtype-specific therapies for patients with SCLC, now treated as a single disease.

19.
Clin Epigenetics ; 16(1): 50, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561804

RESUMO

BACKGROUND: Nucleosome repositioning in cancer is believed to cause many changes in genome organisation and gene expression. Understanding these changes is important to elucidate fundamental aspects of cancer. It is also important for medical diagnostics based on cell-free DNA (cfDNA), which originates from genomic DNA regions protected from digestion by nucleosomes. RESULTS: We have generated high-resolution nucleosome maps in paired tumour and normal tissues from the same breast cancer patients using MNase-assisted histone H3 ChIP-seq and compared them with the corresponding cfDNA from blood plasma. This analysis has detected single-nucleosome repositioning at key regulatory regions in a patient-specific manner and common cancer-specific patterns across patients. The nucleosomes gained in tumour versus normal tissue were particularly informative of cancer pathways, with ~ 20-fold enrichment at CpG islands, a large fraction of which marked promoters of genes encoding DNA-binding proteins. The tumour tissues were characterised by a 5-10 bp decrease in the average distance between nucleosomes (nucleosome repeat length, NRL), which is qualitatively similar to the differences between pluripotent and differentiated cells. This effect was correlated with gene activity, differential DNA methylation and changes in local occupancy of linker histone variants H1.4 and H1X. CONCLUSIONS: Our study offers a novel resource of high-resolution nucleosome maps in breast cancer patients and reports for the first time the effect of systematic decrease of NRL in paired tumour versus normal breast tissues from the same patient. Our findings provide a new mechanistic understanding of nucleosome repositioning in tumour tissues that can be valuable for patient diagnostics, stratification and monitoring.


Assuntos
Neoplasias da Mama , Ácidos Nucleicos Livres , Humanos , Feminino , Nucleossomos/genética , Neoplasias da Mama/genética , Metilação de DNA , Histonas/genética , Histonas/metabolismo , DNA/metabolismo , Ácidos Nucleicos Livres/metabolismo , Cromatina
20.
bioRxiv ; 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37425841

RESUMO

Wrapping of DNA into nucleosomes restricts accessibility to the DNA and may affect the recognition of binding motifs by transcription factors. A certain class of transcription factors, the pioneer transcription factors, can specifically recognize their DNA binding sites on nucleosomes, may initiate local chromatin opening and facilitate the binding of co-factors in a cell-type-specific manner. For the majority of human pioneer transcription factors, the locations of their binding sites, mechanisms of binding and regulation remain unknown. We have developed a computational method to predict the cell-type-specific ability of transcription factors to bind nucleosomes by integrating ChIP-seq, MNase-seq and DNase-seq data with details of nucleosome structure. We have demonstrated the ability of our approach in discriminating pioneer from canonical transcription factors and predicted new potential pioneer transcription factors in H1, K562, HepG2 and HeLa cell lines. Lastly, we systemically analyzed the interaction modes between various pioneer transcription factors and detected several clusters of distinctive binding sites on nucleosomal DNA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA