Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 86(18): 9082-90, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25148857

RESUMO

We address a novel method for analytical determinations that combines simplicity, rapidity, low consumption of chemicals, and portability with high analytical performance taking into account parameters such as precision, linearity, robustness, and accuracy. This approach relies on the effect of the analyte content over the Gibbs free energy of dispersions, affecting the thermodynamic stabilization of emulsions or Winsor systems to form microemulsions (MEs). Such phenomenon was expressed by the minimum volume fraction of amphiphile required to form microemulsion (Φ(ME)), which was the analytical signal of the method. Thus, the measurements can be taken by visually monitoring the transition of the dispersions from cloudy to transparent during the microemulsification, like a titration. It bypasses the employment of electric energy. The performed studies were: phase behavior, droplet dimension by dynamic light scattering, analytical curve, and robustness tests. The reliability of the method was evaluated by determining water in ethanol fuels and monoethylene glycol in complex samples of liquefied natural gas. The dispersions were composed of water-chlorobenzene (water analysis) and water-oleic acid (monoethylene glycol analysis) with ethanol as the hydrotrope phase. The mean hydrodynamic diameter values for the nanostructures in the droplet-based water-chlorobenzene MEs were in the range of 1 to 11 nm. The procedures of microemulsification were conducted by adding ethanol to water-oleic acid (W-O) mixtures with the aid of micropipette and shaking. The Φ(ME) measurements were performed in a thermostatic water bath at 23 °C by direct observation that is based on the visual analyses of the media. The experiments to determine water demonstrated that the analytical performance depends on the composition of ME. It shows flexibility in the developed method. The linear range was fairly broad with limits of linearity up to 70.00% water in ethanol. For monoethylene glycol in water, in turn, the linear range was observed throughout the volume fraction of analyte. The best limits of detection were 0.32% v/v water to ethanol and 0.30% v/v monoethylene glycol to water. Furthermore, the accuracy was highly satisfactory. The natural gas samples provided by the Petrobras exhibited color, particulate material, high ionic strength, and diverse compounds as metals, carboxylic acids, and anions. These samples had a conductivity of up to 2630 µS cm(-1); the conductivity of pure monoethylene glycol was only 0.30 µS cm(-1). Despite such downsides, the method allowed accurate measures bypassing steps such as extraction, preconcentration, and dilution of the sample. In addition, the levels of robustness were promising. This parameter was evaluated by investigating the effect of (i) deviations in volumetric preparation of the dispersions and (ii) changes in temperature over the analyte contents recorded by the method.

2.
Colloids Surf B Biointerfaces ; 158: 182-189, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28692873

RESUMO

The indiscriminate use of antibiotics and the emergence of resistant microorganisms have become a major challenge for the food industry. The purpose of this work was to microencapsulate the bacteriophage UFV-AREG1 in a calcium alginate matrix using microfluidic devices and to study the viability and efficiency of retention. The microcapsules were added to gel of propylene glycol for use as an antimicrobial in the food industry. The technique showed the number of the phage encapsulation, yielding drops with an average 100-250µm of diameter, 82.1±2% retention efficiency and stability in the gel matrix for 21days. The gel added to the microencapsulated phage showed efficiency (not detectable on the surface) in reducing bacterial contamination on the surface at a similar level to antimicrobial chemicals (alcohol 70%). Therefore, it was possible to microencapsulate bacteriophages in alginate-Ca and apply the microcapsules in gels for use as sanitizers in the food industry.


Assuntos
Dispositivos Lab-On-A-Chip , Alginatos/química , Bacteriófagos/química , Cápsulas/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Tamanho da Partícula
3.
J Phys Chem B ; 114(42): 13365-71, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-20883002

RESUMO

We report the synthesis of 10,12-pentacosadyinoic acid (PCDA) and PCDA + cholesterol (CHO) + sphingomyelin (SPH) vesicles dispersed in water and the determination of their colorimetric response induced by small amount of organic solvents. In the absence of solvent, PCDA and PCDA/CHO/SPH vesicles showed an intense blue color. The addition of CHCl(3), CH(2)Cl(2), and CCl(4) caused a colorimetric transition (CT) in both structures with the following efficiency: CHCl(3) > CH(2)Cl(2) ≅ CCl(4). However, CH(3)OH did not cause a blue-to-red transition. By microcalorimetric technique we also determined, for the first time, the enthalpy change associated with the CT process and the energy of interaction between solvent molecules and vesicle self-assembly. We observed that the chloride solvents induced a colorimetric transition, but the thermodynamic mechanism was different for each of them. CT induced by CHCl(3) was enthalpically driven, while that caused by CH(2)Cl(2) or CCl(4) was entropically driven.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA