Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486048

RESUMO

Early-life stress has been linked to multiple neurodevelopmental and neuropsychiatric deficits. Our previous studies have linked maternal presence/absence from the nest in developing rat pups to changes in prefrontal cortex (PFC) activity. Furthermore, we have shown that these changes are modulated by serotonergic signaling. Here we test whether changes in PFC activity during early life affect the developing cortex leading to behavioral alterations in the adult. We show that inhibiting the PFC of mouse pups leads to cognitive deficits in the adult comparable to those seen following maternal separation. Moreover, we show that activating the PFC during maternal separation can prevent these behavioral deficits. To test how maternal separation affects the transcriptional profile of the PFC we performed single-nucleus RNA-sequencing. Maternal separation led to differential gene expression almost exclusively in inhibitory neurons. Among others, we found changes in GABAergic and serotonergic pathways in these interneurons. Interestingly, both maternal separation and early-life PFC inhibition led to changes in physiological responses in prefrontal activity to GABAergic and serotonergic antagonists that were similar to the responses of more immature brains. Prefrontal activation during maternal separation prevented these changes. These data point to a crucial role of PFC activity during early life in behavioral expression in adulthood.

2.
Bioorg Med Chem Lett ; : 129894, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39043264

RESUMO

Drug repurposing and rescuing have been widely explored as cost-effective approaches to expand the portfolio of chemotherapeutic agents. Based on the reported antitumor properties of both trans-cinnamic acids and quinacrine, an antimalarial aminoacridine, we explored the antiproliferative properties of two series of N-cinnamoyl-aminoacridines recently identified as multi-stage antiplasmodial leads. The compounds were evaluated in vitro against three cancer cell lines (MKN-28, Huh-7, and HepG2), and human primary dermal fibroblasts. One of the series displayed highly selective antiproliferative activity in the micromolar range against the three cancer cell lines tested, without any toxicity to non-carcinogenic cells.

3.
Bioorg Med Chem ; 104: 117714, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38582046

RESUMO

4,9-diaminoacridines with reported antiplasmodial activity were coupled to different trans-cinnamic acids, delivering a new series of conjugates inspired by the covalent bitherapy concept. The new compounds were more potent than primaquine against hepatic stages of Plasmodium berghei, although this was accompanied by cytotoxic effects on Huh-7 hepatocytes. Relevantly, the conjugates displayed nanomolar activities against blood stage P. falciparum parasites, with no evidence of hemolytic effects below 100 µM. Moreover, the new compounds were at least 25-fold more potent than primaquine against P. falciparum gametocytes. Thus, the new antiplasmodial hits disclosed herein emerge as valuable templates for the development of multi-stage antiplasmodial drug candidates.


Assuntos
Antimaláricos , Cinamatos , Malária Falciparum , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Primaquina/farmacologia , Revelação , Plasmodium falciparum , Malária Falciparum/tratamento farmacológico , Plasmodium berghei
4.
J Nat Prod ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900961

RESUMO

The adaptation of amphibians to diverse environments is closely related to the characteristics of their skin. The complex glandular system of frog skin plays a pivotal role in enabling these animals to thrive in both aquatic and terrestrial habitats and consists of crucial functions such as respiration and water balance as well as serving as a defensive barrier due to the secretion of bioactive compounds. We herein report the first investigation on the skin secretion of Odontophrynus americanus, as a potential source of bioactive peptides and also as an indicator of its evolutionary adaptations to changing environments. Americanin-1 was isolated and identified as a neutral peptide exhibiting moderate antibacterial activity against E. coli. Its amphipathic sequence including 19 amino acids and showing a propensity for α-helix structure is discussed. Comparisons of the histomorphology of the skin of O. americanus with other previously documented species within the same genus revealed distinctive features in the Patagonian specimen, differing from conspecifics from other Argentine provinces. The presence of the Eberth-Katschenko layer, a prevalence of iridophores, and the existence of glycoconjugates in its serous glands suggest that the integument is adapted to retain skin moisture. This adaptation is consistent with the prevailing aridity of its native habitat.

5.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674923

RESUMO

This work reports the synthesis, structural and thermal analysis, and in vitro evaluation of the antimicrobial activity of two new organic salts (OSs) derived from the antimycobacterial drug clofazimine and the fluoroquinolones ofloxacin or norfloxacin. Organic salts derived from active pharmaceutical ingredients (API-OSs), as those herein disclosed, hold promise as cost-effective formulations with improved features over their parent drugs, thus enabling the mitigation of some of their shortcomings. For instance, in the specific case of clofazimine, its poor solubility severely limits its bioavailability. As compared to clofazimine, the clofazimine-derived OSs now reported have improved solubility and thermostability, without any major deleterious effects on the drug's bioactivity profile.


Assuntos
Clofazimina , Fluoroquinolonas , Fluoroquinolonas/farmacologia , Clofazimina/farmacologia , Clofazimina/química , Sais , Antibacterianos/farmacologia , Antibacterianos/química , Solubilidade
6.
J Neurosci ; 41(11): 2475-2495, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33472828

RESUMO

The dentate gyrus (DG) of the hippocampus is important for cognition and behavior. However, the circuits underlying these functions are unclear. DG mossy cells (MCs) are potentially important because of their excitatory synapses on the primary cell type, granule cells (GCs). However, MCs also activate GABAergic neurons, which inhibit GCs. We used viral delivery of designer receptors exclusively activated by designer drugs (DREADDs) in mice to implement a gain- and loss-of-function study of MCs in diverse behaviors. Using this approach, manipulations of MCs could bidirectionally regulate behavior. The results suggest that inhibiting MCs can reduce anxiety-like behavior and improve cognitive performance. However, not all cognitive or anxiety-related behaviors were influenced, suggesting specific roles of MCs in some, but not all, types of cognition and anxiety. Notably, several behaviors showed sex-specific effects, with females often showing more pronounced effects than the males. We also used the immediate early gene c-Fos to address whether DREADDs bidirectionally regulated MC or GC activity. We confirmed excitatory DREADDs increased MC c-Fos. However, there was no change in GC c-Fos, consistent with MC activation leading to GABAergic inhibition of GCs. In contrast, inhibitory DREADDs led to a large increase in GC c-Fos, consistent with a reduction in MC excitation of GABAergic neurons, and reduced inhibition of GCs. Together, these results suggest that MCs regulate anxiety and cognition in specific ways. We also raise the possibility that cognitive performance may be improved by reducing anxiety.SIGNIFICANCE STATEMENT The dentate gyrus (DG) has many important cognitive roles as well as being associated with affective behavior. This study addressed how a glutamatergic DG cell type called mossy cells (MCs) contributes to diverse behaviors, which is timely because it is known that MCs regulate the activity of the primary DG cell type, granule cells (GCs), but how MC activity influences behavior is unclear. We show, surprisingly, that activating MCs can lead to adverse behavioral outcomes, and inhibiting MCs have an opposite effect. Importantly, the results appeared to be task-dependent and showed that testing both sexes was important. Additional experiments indicated what MC and GC circuitry was involved. Together, the results suggest how MCs influence behaviors that involve the DG.


Assuntos
Ansiedade/fisiopatologia , Comportamento Animal/fisiologia , Cognição/fisiologia , Giro Denteado/fisiologia , Fibras Musgosas Hipocampais/fisiologia , Animais , Feminino , Masculino , Camundongos
7.
J Neurosci ; 41(12): 2723-2732, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33536200

RESUMO

Early life is a sensitive period, in which enhanced neural plasticity allows the developing brain to adapt to its environment. This plasticity can also be a risk factor in which maladaptive development can lead to long-lasting behavioral deficits. Here, we test how early-life exposure to the selective-serotonin-reuptake-inhibitor (SSRI), fluoxetine, affects motivation, and dopaminergic signaling in adulthood. We show for the first time that mice exposed to fluoxetine in the early postnatal period exhibit a reduction in effort-related motivation. These mice also show blunted responses to amphetamine and reduced dopaminergic activation in a sucrose reward task. Interestingly, we find that the reduction in motivation can be rescued in the adult by administering bupropion, a dopamine-norepinephrine reuptake inhibitor used as an antidepressant and a smoke cessation aid but not by fluoxetine. Taken together, our studies highlight the effects of early postnatal exposure of fluoxetine on motivation and demonstrate the involvement of the dopaminergic system in this process.SIGNIFICANCE STATEMENT The developmental period is characterized by enhanced plasticity. During this period, environmental factors have the potential to lead to enduring behavioral changes. Here, we show that exposure to the SSRI fluoxetine during a restricted period in early life leads to a reduction in adult motivation. We further show that this reduction is associated with decreased dopaminergic responsivity. Finally, we show that motivational deficits induced by early-life fluoxetine exposure can be rescued by adult administration of bupropion but not by fluoxetine.


Assuntos
Dopamina/metabolismo , Fluoxetina/farmacologia , Locomoção/efeitos dos fármacos , Motivação/efeitos dos fármacos , Fenótipo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Animais , Animais Recém-Nascidos , Feminino , Locomoção/fisiologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Microdiálise/métodos , Motivação/fisiologia
8.
J Cell Mol Med ; 26(10): 2793-2807, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35460166

RESUMO

Tryptophyllins constitute a heterogeneous group of peptides that are one of the first classes of peptides identified from amphibian's skin secretions. Here, we report the structural characterization and antioxidant properties of a novel tryptophyllin-like peptide, named PpT-2, isolated from the Iberian green frog Pelophylax perezi. The skin secretion of P. perezi was obtained by electrical stimulation and fractionated using RP-HPLC. De novo peptide sequencing was conducted using MALDI MS/MS. The primary structure of PpT-2 (FPWLLS-NH2 ) was confirmed by Edman degradation and subsequently investigated using in silico tools. PpT-2 shared physicochemical properties with other well-known antioxidants. To test PpT-2 for antioxidant activity in vitro, the peptide was synthesized by solid phase and assessed in the chemical-based ABTS and DPPH scavenging assays. Then, a flow cytometry experiment was conducted to assess PpT-2 antioxidant activity in oxidatively challenged murine microglial cells. As predicted by the in silico analyses, PpT-2 scavenged free radicals in vitro and suppressed the generation of reactive species in PMA-stimulated BV-2 microglia cells. We further explored possible bioactivities of PpT-2 against prostate cancer cells and bacteria, against which the peptide exerted a moderate antiproliferative effect and negligible antimicrobial activity. The biocompatibility of PpT-2 was evaluated in cytotoxicity assays and in vivo toxicity with Galleria mellonella. No toxicity was detected in cells treated with up to 512 µg/ml and in G. mellonella treated with up to 40 mg/kg PpT-2. This novel peptide, PpT-2, stands as a promising peptide with potential therapeutic and biotechnological applications, mainly for the treatment/prevention of neurodegenerative disorders.


Assuntos
Antioxidantes , Fármacos Neuroprotetores , Animais , Antioxidantes/metabolismo , Anuros/metabolismo , Masculino , Camundongos , Microglia/metabolismo , Peptídeos/química , Ranidae/metabolismo , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem
9.
Mol Psychiatry ; 26(9): 4795-4812, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32398719

RESUMO

Serotonin and dopamine are associated with multiple psychiatric disorders. How they interact during development to affect subsequent behavior remains unknown. Knockout of the serotonin transporter or postnatal blockade with selective serotonin reuptake inhibitors (SSRIs) leads to novelty-induced exploration deficits in adulthood, potentially involving the dopamine system. Here, we show in the mouse that raphe nucleus serotonin neurons activate ventral tegmental area dopamine neurons via glutamate co-transmission and that this co-transmission is reduced in animals exposed postnatally to SSRIs. Blocking serotonin neuron glutamate co-transmission mimics this SSRI-induced hypolocomotion, while optogenetic activation of dopamine neurons reverses this hypolocomotor phenotype. Our data demonstrate that serotonin neurons modulate dopamine neuron activity via glutamate co-transmission and that this pathway is developmentally malleable, with high serotonin levels during early life reducing co-transmission, revealing the basis for the reduced novelty-induced exploration in adulthood due to postnatal SSRI exposure.


Assuntos
Ácido Glutâmico , Área Tegmentar Ventral , Animais , Neurônios Dopaminérgicos , Feminino , Camundongos , Camundongos Knockout , Gravidez , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
10.
Proc Biol Sci ; 288(1962): 20211531, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34753356

RESUMO

In addition to the morphophysiological changes experienced by amphibians during metamorphosis, they must also deal with a different set of environmental constraints when they shift from the water to the land. We found that Pithecopus azureus secretes a single peptide ([M + H]+ = 658.38 Da) at the developmental stage that precedes the onset of terrestrial behaviour. De novo peptide and cDNA sequencing revealed that the peptide, named PaT-2, is expressed in tandem and is a member of the tryptophyllins family. In silico studies allowed us to identify the position of reactive sites and infer possible antioxidant mechanisms of the compounds. Cell-based assays confirmed the predicted antioxidant activity in mammalian microglia and neuroblast cells. The potential neuroprotective effect of PaT-2 was further corroborated in FRET-based live cell imaging assays, where the peptide prevented lipopolysaccharide-induced ROS production and glutamate release in human microglia. In summary, PaT-2 is the first peptide expressed during the ontogeny of P. azureus, right before the metamorphosing froglet leaves the aquatic environment to occupy terrestrial habitats. The antioxidant activity of PaT-2, predicted by in silico analyses and confirmed by cell-based assays, might be relevant for the protection of the skin of P. azureus adults against increased O2 levels and UV exposure on land compared with aquatic environments.


Assuntos
Antioxidantes , Água , Animais , Antioxidantes/análise , Anuros/fisiologia , Humanos , Mamíferos , Peptídeos/análise , Pele , Água/análise
11.
Mol Psychiatry ; 25(12): 3304-3321, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-30120415

RESUMO

Serotonin (5-HT) selective reuptake inhibitors (SSRIs) are widely used in the treatment of depression and anxiety disorders, but responsiveness is uncertain and side effects often lead to discontinuation. Side effect profiles suggest that SSRIs reduce dopaminergic (DAergic) activity, but specific mechanistic insight is missing. Here we show in mice that SSRIs impair motor function by acting on 5-HT2C receptors in the substantia nigra pars reticulata (SNr), which in turn inhibits nigra pars compacta (SNc) DAergic neurons. SSRI-induced motor deficits can be reversed by systemic or SNr-localized 5-HT2C receptor antagonism. SSRIs induce SNr hyperactivity and SNc hypoactivity that can also be reversed by systemic 5-HT2C receptor antagonism. Optogenetic inhibition of SNc DAergic neurons mimics the motor deficits due to chronic SSRI treatment, whereas local SNr 5-HT2C receptor antagonism or optogenetic activation of SNc DAergic neurons reverse SSRI-induced motor deficits. Lastly, we find that 5-HT2C receptor antagonism potentiates the antidepressant and anxiolytic effects of SSRIs. Together our findings demonstrate opposing roles for 5-HT2C receptors in the effects of SSRIs on motor function and affective behavior, highlighting the potential benefits of 5-HT2C receptor antagonists for both reduction of motor side effects of SSRIs and augmentation of therapeutic antidepressant and anxiolytic effects.


Assuntos
Receptor 5-HT2C de Serotonina , Inibidores Seletivos de Recaptação de Serotonina , Animais , Gânglios da Base , Dopamina , Camundongos , Serotonina , Substância Negra
12.
Int J Mol Sci ; 22(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34769430

RESUMO

Topical and transdermal delivery systems are of undeniable significance and ubiquity in healthcare, to facilitate the delivery of active pharmaceutical ingredients, respectively, onto or across the skin to enter systemic circulation. From ancient ointments and potions to modern micro/nanotechnological devices, a variety of approaches has been explored over the ages to improve the skin permeation of diverse medicines and cosmetics. Amongst the latest investigational dermal permeation enhancers, ionic liquids have been gaining momentum, and recent years have been prolific in this regard. As such, this review offers an outline of current methods for enhancing percutaneous permeation, highlighting selected reports where ionic liquid-based approaches have been investigated for this purpose. Future perspectives on use of ionic liquids for topical delivery of bioactive peptides are also presented.


Assuntos
Cosméticos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Líquidos Iônicos/uso terapêutico , Pele/efeitos dos fármacos , Pele/metabolismo , Administração Cutânea , Animais , Permeabilidade da Membrana Celular , Cosméticos/química , Cosméticos/farmacocinética , Humanos , Líquidos Iônicos/farmacocinética , Absorção Cutânea
13.
Int J Mol Sci ; 22(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922379

RESUMO

Peptide-based drugs are an attractive class of therapeutic agents, recently recognized by the pharmaceutical industry. These molecules are currently being used in the development of innovative therapies for diverse health conditions, including tropical diseases such as leishmaniasis. Despite its socioeconomic influence on public health, leishmaniasis remains long-neglected and categorized as a poverty-related disease, with limited treatment options. Peptides with antileishmanial effects encountered to date are a structurally heterogeneous group, which can be found in different natural sources-amphibians, reptiles, insects, bacteria, marine organisms, mammals, plants, and others-or inspired by natural toxins or proteins. This review details the biochemical and structural characteristics of over one hundred peptides and their potential use as molecular frameworks for the design of antileishmanial drug leads. Additionally, we detail the main chemical modifications or substitutions of amino acid residues carried out in the peptide sequence, and their implications in the development of antileishmanial candidates for clinical trials. Our bibliographic research highlights that the action of leishmanicidal peptides has been evaluated mainly using in vitro assays, with a special emphasis on the promastigote stage. In light of these findings, and considering the advances in the successful application of peptides in leishmaniasis chemotherapy, possible approaches and future directions are discussed here.


Assuntos
Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Fragmentos de Peptídeos/farmacologia , Animais , Humanos , Leishmaniose/parasitologia
14.
Molecules ; 26(3)2021 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-33498868

RESUMO

Malaria is among the deadliest infectious diseases in the world caused by Plasmodium parasites. Due to the high complexity of the parasite's life cycle, we partly depend on antimalarial drugs to fight this disease. However, the emergence of resistance, mainly by Plasmodium falciparum, has dethroned most of the antimalarials developed to date. Given recent reports of resistance to artemisinin combination therapies, first-line treatment currently recommended by the World Health Organization, in Western Cambodia and across the Greater Mekong sub-region, it seems very likely that artemisinin and its derivatives will follow the same path of other antimalarial drugs. Consequently, novel, safe and efficient antimalarial drugs are urgently needed. One fast and low-cost strategy to accelerate antimalarial development is by recycling classical pharmacophores. Quinacrine, an acridine-based compound and the first clinically tested synthetic antimalarial drug with potent blood schizonticide but serious side effects, has attracted attention due to its broad spectrum of biological activity. In this sense, the present review will focus on efforts made in the last 20 years for the development of more efficient, safer and affordable antimalarial compounds, through recycling the classical quinacrine drug.


Assuntos
Acridinas/química , Antimaláricos/química , Acridinas/farmacologia , Animais , Antimaláricos/farmacologia , Humanos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos
15.
Molecules ; 26(5)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800273

RESUMO

Pseudomonas syringae pv. actinidiae (Psa) is the pathogenic agent responsible for the bacterial canker of kiwifruit (BCK) leading to major losses in kiwifruit productions. No effective treatments and measures have yet been found to control this disease. Despite antimicrobial peptides (AMPs) having been successfully used for the control of several pathogenic bacteria, few studies have focused on the use of AMPs against Psa. In this study, the potential of six AMPs (BP100, RW-BP100, CA-M, 3.1, D4E1, and Dhvar-5) to control Psa was investigated. The minimal inhibitory and bactericidal concentrations (MIC and MBC) were determined and membrane damaging capacity was evaluated by flow cytometry analysis. Among the tested AMPs, the higher inhibitory and bactericidal capacity was observed for BP100 and CA-M with MIC of 3.4 and 3.4-6.2 µM, respectively and MBC 3.4-10 µM for both. Flow cytometry assays suggested a faster membrane permeation for peptide 3.1, in comparison with the other AMPs studied. Peptide mixtures were also tested, disclosing the high efficiency of BP100:3.1 at low concentration to reduce Psa viability. These results highlight the potential interest of AMP mixtures against Psa, and 3.1 as an antimicrobial molecule that can improve other treatments in synergic action.


Assuntos
Proteínas Citotóxicas Formadoras de Poros/farmacologia , Pseudomonas syringae/efeitos dos fármacos , Actinidia , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Sinergismo Farmacológico , Frutas/efeitos dos fármacos , Histatinas/farmacologia , Oligopeptídeos/farmacologia , Doenças das Plantas/microbiologia , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Pseudomonas syringae/metabolismo , Pseudomonas syringae/patogenicidade
16.
J Sport Rehabil ; 30(7): 1060-1066, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34034229

RESUMO

CONTEXT: Neural mobilization is commonly used in sports, and previous studies have suggested that it has a positive impact on lower-limb flexibility and performance. However, studies exploring the effect of neural mobilization dosage are almost nonexistent. OBJECTIVES: This study aimed to assess whether 2 distinct dosages of neural gliding mobilization (4 and 8 sets of 10 repetitions) impact the flexibility and performance of both the mobilized and nonmobilized lower limb in basketball athletes differently. DESIGN: Randomized, parallel, and single-blinded study. SETTING: Amateur and professional basketball clubs. PARTICIPANTS: Fifty-two basketball athletes (40 men and 12 women), who were distributed into 2 groups; one received 40 (n = 28) and the other 80 repetitions (n = 24) of neural gliding mobilization. INTERVENTION: Neural gliding mobilization applied to a single limb (the dominant limb). MAIN OUTCOME MEASURES: Knee extension angle for hamstring flexibility; hop tests and single-leg vertical jump for performance. RESULTS: There was a significant main effect of time (P < .001), a significant interaction between time and limb for flexibility (P = .003), and a significant interaction between time and limb for the single-leg hop test (P = .032). No other significant main effect for any of the remaining variables was found (P > .05). CONCLUSIONS: The application of both 40 repetitions and 80 of neural gliding significantly improved lower-limb flexibility, and one was not superior to the other. Neither one dosage nor the other positively or negatively impacted the lower-limb performance of basketball athletes.


Assuntos
Basquetebol , Atletas , Feminino , Humanos , Articulação do Joelho , Extremidade Inferior , Masculino
17.
Int J Mol Sci ; 21(15)2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32727096

RESUMO

Ionic liquids derived from classical antimalarials are emerging as a new approach towards the cost-effective rescuing of those drugs. Herein, we disclose novel surface-active ionic liquids derived from chloroquine and natural fatty acids whose antimalarial activity in vitro was found to be superior to that of the parent drug. The most potent ionic liquid was the laurate salt of chloroquine, which presented IC50 values of 4 and 110 nM against a chloroquine-sensitive and a chloroquine-resistant strain of Plasmodium falciparum, respectively, corresponding to an 11- and 6-fold increase in potency as compared to the reference chloroquine bisphosphate salt against the same strains. This unprecedented report opens new perspectives in both the fields of malaria chemotherapy and of surface-active ionic liquids derived from active pharmaceutical ingredients.


Assuntos
Antimaláricos/farmacologia , Cloroquina/farmacocinética , Resistência a Medicamentos/efeitos dos fármacos , Líquidos Iônicos/farmacologia , Plasmodium falciparum/crescimento & desenvolvimento , Antimaláricos/química , Cloroquina/química , Líquidos Iônicos/química
18.
Int J Mol Sci ; 21(17)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32859111

RESUMO

A covalent conjugate between an antibacterial ionic liquid and an antimicrobial peptide was produced via "click" chemistry, and found to retain the parent peptide's activity against multidrug-resistant clinical isolates of Gram-negative bacteria, and antibiofilm action on a resistant clinical isolate of Klebsiella pneumoniae, while exhibiting much improved stability towards tyrosinase-mediated modifications. This unprecedented communication is a prelude for the promise held by ionic liquids -based approaches as tools to improve the action of bioactive peptides.


Assuntos
Reação de Cicloadição/métodos , Bactérias Gram-Negativas/crescimento & desenvolvimento , Líquidos Iônicos/química , Proteínas Citotóxicas Formadoras de Poros/química , Alcinos/química , Azidas/química , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Linhagem Celular , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Humanos , Líquidos Iônicos/farmacologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Proteínas Citotóxicas Formadoras de Poros/farmacologia
19.
Molecules ; 25(3)2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31973244

RESUMO

Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), remains one of the top ten causes of death worldwide and the main cause of mortality from a single infectious agent. The upsurge of multi- and extensively-drug resistant tuberculosis cases calls for an urgent need to develop new and more effective antitubercular drugs. As the cinnamoyl scaffold is a privileged and important pharmacophore in medicinal chemistry, some studies were conducted to find novel cinnamic acid derivatives (CAD) potentially active against tuberculosis. In this context, we have engaged in the setting up of a quantitative structure-activity relationships (QSAR) strategy to: (i) derive through multiple linear regression analysis a statistically significant model to describe the antitubercular activity of CAD towards wild-type Mtb; and (ii) identify the most relevant properties with an impact on the antitubercular behavior of those derivatives. The best-found model involved only geometrical and electronic CAD related properties and was successfully challenged through strict internal and external validation procedures. The physicochemical information encoded by the identified descriptors can be used to propose specific structural modifications to design better CAD antitubercular compounds.


Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Cinamatos/química , Cinamatos/farmacologia , Relação Quantitativa Estrutura-Atividade , Modelos Lineares , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos
20.
Adv Exp Med Biol ; 1117: 281-298, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30980363

RESUMO

Antimicrobial peptides (AMPs) have been described as one of the most promising compounds able to address one of the main health threats of the twenty-first century that is the continuous rise of multidrug-resistant microorganisms. However, despite the clear advantages of AMPs as a new class of antimicrobials, such as broad spectrum of activity, high selectivity, low toxicity and low propensity to induce resistance, only a small fraction of AMPs reported thus far have been able to successfully complete all phases of clinical trials and become accessible to patients. This is mainly related to the low bioavailability and still somewhat expensive production of AMP along with regulatory obstacles. This chapter offers an overview of selected AMPs that are currently in the market or under clinical trials. Strategies for assisting AMP industrial translation and major regulatory difficulties associated with AMP approval for clinical evaluation will be also discussed.


Assuntos
Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA