Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nat Prod ; 87(6): 1601-1610, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38832890

RESUMO

Kavaratamide A (1), a new linear lipodepsipeptide possessing an unusual isopropyl-O-methylpyrrolinone moiety, was discovered from the tropical marine filamentous cyanobacterium Moorena bouillonii collected from Kavaratti, India. A comparative chemogeographic analysis of M. bouillonii collected from six different geographical regions led to the prioritized isolation of this metabolite from India as distinctive among our data sets. AI-based structure annotation tools, including SMART 2.1 and DeepSAT, accelerated the structure elucidation by providing useful structural clues, and the full planar structure was elucidated based on comprehensive HRMS, MS/MS fragmentation, and NMR data interpretation. Subsequently, the absolute configuration of 1 was determined using advanced Marfey's analysis, modified Mosher's ester derivatization, and chiral-phase HPLC. The structures of kavaratamides B (2) and C (3) are proposed based on a detailed analysis of their MS/MS fragmentations. The biological activity of kavaratamide A was also investigated and found to show moderate cytotoxicity to the D283-medullablastoma cell line.


Assuntos
Cianobactérias , Depsipeptídeos , Cianobactérias/química , Depsipeptídeos/química , Depsipeptídeos/farmacologia , Depsipeptídeos/isolamento & purificação , Estrutura Molecular , Índia , Ressonância Magnética Nuclear Biomolecular , Biologia Marinha , Humanos , Ensaios de Seleção de Medicamentos Antitumorais , Cromatografia Líquida de Alta Pressão
2.
ACS Omega ; 9(32): 34829-34840, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39157084

RESUMO

The 20S proteasome is a multimeric protease complex that is essential for proteostasis in the cell. Small molecule proteasome inhibitors are approved drugs for various cancers and are advancing clinically as antiparasitics. Although tools and technologies to study the 20S proteasome have advanced, only one probe is commercially available to image proteasome activity. This probe consists of a fluorescently labeled, peptidyl vinyl sulfone that binds to one or more of the catalytic proteasome subunits. Here, we synthesized two, active site-directed epoxyketone probes, LJL-1 and LJL-2, that were based on the peptidyl backbones of the anticancer drugs, carfilzomib and bortezomib, respectively. Each probe was conjugated, via click chemistry, to a bifunctional group comprising 5-carboxytetramethylrhodamine (TAMRA) and biotin to, respectively, visualize and enrich the 20S proteasome from protein extracts of two eukaryotic pathogens, Leishmania donovani and Trichomonas vaginalis. Depending on species, each probe generated a different subunit-binding profile by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), and the biotin tag enabled the enrichment of the bound subunits which were then formally identified by proteomics. Species differences in the order of electrophoretic migration by the ß subunits were also noted. Finally, both probes reacted specifically with the 20S subunits in contrast to the commercial vinyl sulfone probe that cross reacted with cysteine proteases. LJL-1 and LJL-2 should find general utility in the identification and characterization of pathogen proteasomes, and serve as reagents to evaluate the specificity and mechanism of binding of new antiparasitic proteasome inhibitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA