Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
BMC Plant Biol ; 20(1): 437, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32962650

RESUMO

BACKGROUND: MicroRNAs (miRNAs) and their regulatory functions in anthocyanin, carotenoid, and chlorophyll accumulation have been extensively characterized in many plant species. However, the miRNA regulatory mechanism in betalain biosynthesis remains mostly unknown. RESULTS: In this study, 126 conserved miRNAs and 41 novel miRNAs were first isolated from Hylocereus monacanthus, among which 95 conserved miRNAs belonged to 53 miRNA families. Thirty-four candidate miRNAs related to betalain biosynthesis were differentially expressed. The expression patterns of those differential expressed miRNAs were analyzed in various pitaya tissues by RT-qPCR. A significantly negative correlation was detected between the expression levels of half those miRNAs and corresponding target genes. Target genes of miRNAs i.e. Hmo-miR157b-HmSPL6-like, Hmo-miR160a-Hpcyt P450-like3, Hmo-miR6020-HmCYP71A8-like, Hmo-novel-2-HmCYP83B1-like, Hmo-novel-15-HmTPST-like, Hmo-miR828a-HmTT2-like, Hmo-miR858-HmMYB12-like, Hmo-miR858-HmMYBC1-like and Hmo-miR858-HmMYB2-like were verified by 5'RACE and transient expression system in tobacco. CONCLUSIONS: Hmo-miR157b, Hmo-miR160a, Hmo-miR6020 Hmo-novel-2, Hmo-novel-15, Hmo-miR828a and Hmo-miR858 play important roles in pitaya fruit coloration and betalain accumulation. Our findings provide new insights into the roles of miRNAs and their target genes of regulatory functions involved in betalain biosynthesis of pitaya.


Assuntos
Betalaínas/biossíntese , Cactaceae/genética , MicroRNAs/genética , RNA de Plantas/genética , Cactaceae/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Análise de Sequência de RNA , Transcriptoma/genética
3.
Plant Physiol ; 162(3): 1583-98, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23735509

RESUMO

Comparative studies of the stress-tolerant Arabidopsis (Arabidopsis thaliana) halophytic relative, Eutrema salsugineum, have proven a fruitful approach to understanding natural stress tolerance. Here, we performed comparative phenotyping of Arabidopsis and E. salsugineum vegetative development under control and salt-stress conditions, and then compared the metabolic responses of the two species on different growth platforms in a defined leaf developmental stage. Our results reveal both growth platform-dependent and -independent phenotypes and metabolic responses. Leaf emergence was affected in a similar way in both species grown in vitro but the effects observed in Arabidopsis occurred at higher salt concentrations in E. salsugineum. No differences in leaf emergence were observed on soil. A new effect of a salt-mediated reduction in E. salsugineum leaf area was unmasked. On soil, leaf area reduction in E. salsugineum was mainly due to a fall in cell number, whereas both cell number and cell size contributed to the decrease in Arabidopsis leaf area. Common growth platform-independent leaf metabolic signatures such as high raffinose and malate, and low fumarate contents that could reflect core stress tolerance mechanisms, as well as growth platform-dependent metabolic responses were identified. In particular, the in vitro growth platform led to repression of accumulation of many metabolites including sugars, sugar phosphates, and amino acids in E. salsugineum compared with the soil system where these same metabolites accumulated to higher levels in E. salsugineum than in Arabidopsis. The observation that E. salsugineum maintains salt tolerance despite growth platform-specific phenotypes and metabolic responses suggests a considerable degree of phenotypic and metabolic adaptive plasticity in this extremophile.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Brassicaceae/crescimento & desenvolvimento , Brassicaceae/metabolismo , Plantas Tolerantes a Sal/fisiologia , Estresse Fisiológico , Adaptação Fisiológica , Arabidopsis/fisiologia , Brassicaceae/fisiologia , Tamanho Celular , Fumaratos/metabolismo , Malatos/metabolismo , Fenótipo , Folhas de Planta/citologia , Folhas de Planta/crescimento & desenvolvimento , Rafinose/metabolismo , Tolerância ao Sal , Solo , Especificidade da Espécie
4.
BMC Plant Biol ; 13: 173, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24188386

RESUMO

BACKGROUND: Genome doubling may have multi-level effects on the morphology, viability and physiology of polyploids compared to diploids. We studied the changes associated with autopolyploidization in two systems of somatic newly induced polyploids, diploid-autotetraploid and triploid-autohexaploid, belonging to the genus Hylocereus (Cactaceae). Stomata, fruits, seeds, embryos, and pollen were studied. Fruit pulp and seeds were subjected to metabolite profiling using established gas chromatography-mass spectrometry (GC-MS) and ultra-performance liquid chromatography (UPLC) Q-TOF-MS/MS (time of flight)-protocols. RESULTS: Autopolyploid lines produced lower numbers of tetrads, larger pollen grains with lower viability, larger stomata with lower density, and smaller fruits with lower seed numbers and decreased seed viability. The abundance of sugars was lower in the fruits and seeds of the two duplicated lines than in their donor lines, accompanied by increased contents of amino acids, tricarboxylic acid (TCA) cycle intermediates, organic acids and flavonoids. Betacyanins, the major fruit pigments in diploid and triploid donors, decreased following genome doubling. Both autopolyploid Hylocereus lines thus exhibited unfavorable changes, with the outcome being more dramatic in the autohexaploid than in the autotetraploid line. CONCLUSION: Induced autotetraploid and autohexaploid lines exhibited morphological and cytological characteristics that differed from those of their donor plants and that were accompanied by significant metabolic alterations. It is suggested that a developmental arrest occurs in the fruits of the autohexaploid line, since their pericarp shows a greater abundance of acids and of reduced sugars. We conclude that genome doubling does not necessarily confer a fitness advantage and that the extent of alterations induced by autopolyploidization depends on the genetic background of the donor genotype.


Assuntos
Cactaceae/citologia , Cactaceae/metabolismo , Poliploidia , Cactaceae/anatomia & histologia , Cactaceae/genética , Diploide , Citometria de Fluxo , Frutas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Germinação , Metabolômica , Óvulo Vegetal/metabolismo , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/citologia , Estômatos de Plantas/metabolismo , Pólen/metabolismo , Análise de Componente Principal , Característica Quantitativa Herdável , Metabolismo Secundário , Sementes/citologia , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Coloração e Rotulagem
5.
Front Plant Sci ; 14: 1226502, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662155

RESUMO

The fitness of self-progeny individuals is inferior to that of their outcrossed counterparts, resulting in a reduction in a plant population's ability to survive and reproduce. To prevent self-fertilization, angiosperms with hermaphrodite flowers may exploit a variety of mechanisms, including synchronous dichogamy and self-incompatibility. Synchronous dichogamy involves two flowering morphs, with strict within-morph synchronization, thereby preventing not only autogamy and geitonogamy but also intra-morph mating. Self-fertilization is also prevented by self-incompatibility, a genetic mechanism that allows the identification and rejection of "self" pollen, thereby preventing both autogamy and geitonogamy. Here, I seek to provide a perspective of flowering in Ziziphus species exhibiting both synchronous (i.e., "Early" morph flowers open in the morning and "Late" morph flowers open in the afternoon) protandrous dichogamy (i.e., pollen dispersal before the stigma becomes receptive) and self-incompatibility.

6.
Plants (Basel) ; 12(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37687378

RESUMO

Although jojoba (Simmondsia chinensis) has been cultivated for years, information on its N requirements is limited. A 6-year study of mature jojoba plants grown under field conditions with an intensive management regime evaluated the effect of N application rate on plant nutrient status, growth, and productivity, and nitrate accumulation in the soil. Five levels of N application were tested: 50, 150, 250, 370, and 500 kg N ha-1. Fertilizers were provided throughout the growing season via a subsurface drip irrigation system. Leaf N concentration, in both spring and summer, reflected the level of N applied. A diagnostic leaf (youngest leaf that has reached full size) concentration of 1.3% N was identified as the threshold for N deficiency. Increasing rates of N application resulted in higher P levels in young leaves. Plant K status, as reflected in the leaf analysis, was not affected by N treatment but was strongly affected by fruit load. Vegetative growth was inhibited when only 50 kg N ha-1 was applied. Soil analysis at the end of the fertilization season showed substantial accumulation of nitrate for the two highest application rates. Considering productivity, N costs, and environmental risk, 150 kg N ha-1 is the recommended dosage for intensively grown jojoba. N deficiencies can be identified using leaf analysis, and excess N can be detected via soil sampling toward the end of the growing season. These results and tools will facilitate precise N fertilization in intensive jojoba plantations.

7.
Hortic Res ; 9: uhac078, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35707296

RESUMO

This review describes three decades of introduction, agro-technology development, breeding and selection of Hylocereus species, known as pitaya or dragon fruit, as an example of a holistic program aimed to develop the horticultural potential of a perennial underutilized fruit crop. Interspecific homoploid and interploid crosses and embryo rescue procedures produced improved hybrids, some of which have been released to farmers. Molecular tools and morphological and phenological comparisons between the parental species and the resulting hybrids provided valuable information on dominant/recessive traits and on genetic relationships that could be exploited for further hybridizations. In addition, Hylocereus were crossed with species of the closely related genus Selenicereus, producing valuable intergeneric hybrids. In situ chromosome doubling resulted in the production of autopolyploid lines, from which an understanding of the effect of increased ploidy on fruit traits and metabolomic profiles was obtained. Gamete-derived lines were produced, adding to our biobank homozygote lines that were subsequently used for further hybridization. Spontaneous chromosome doubling occurred in haploid gamete-derived Hylocereus monacanthus lines and in interspecific interploid Hylocereus megalanthus × H. undatus hybrids obtained from an embryo rescue procedure, resulting in plants with double the expected ploidy. Challenging technical problems were addressed by the development of protocols for DNA isolation, flow cytometry, in situ chromosome doubling, androgenesis, gynogenesis and embryo rescue following interspecific and interploidy crosses. Current research leading to the development of genomics and molecular tools, including a draft genome of H. undatus, is also presented. Perspectives for further development of Hylocereus species and hybrids are discussed.

8.
Front Plant Sci ; 13: 1024588, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36762178

RESUMO

Grafting has the potential to improve melon fruit yield and quality, but it is currently held that a lack of compatibility between the rootstock and scion compromises such an effect. To throw light on this subject, we studied melon-pumpkin graft combinations with different levels of compatibility to assess to the effect of the rootstock identity on melon fruit yield and quality, including total fruit ortho-diphenols, total flavonoids, and primary fruit metabolites. Melon cv. 'Kiran' (Ki) was grafted onto three pumpkin rootstocks, 'TZ-148' (TZ), 'Shimshon' (Sh), and '53006' (r53), characterized by high, moderate, and low compatibility, respectively. The non-grafted melon cultivar Ki was used as the control. The incompatible combination Ki/r53 gave the lowest fruit yield and the lowest average fruit weight. In that combination, the content of total ortho-diphenols increased vs. Ki and Ki/TZ and that of total flavonoids decreased vs. Ki/Sh. In addition, concentrations of the amino acids, glutamate, methionine, valine, alanine, glycine, and serine, increased in the pulp of the two compatible combinations, i.e., Ki/TZ and Ki/Sh, suggesting that rootstock identity and compatibility with melon Ki scion modulated amino acid synthesis. Our results show an association between rootstock identity (and level of compatibility with the scion) and an enhancement of fruit nutritional values, i.e., high concentrations of organic acids (determined as citrate, malate, fumarate, and succinate) and soluble carbohydrates (sucrose) were recorded in the pulp of the two compatible combinations, i.e., Ki/TZ and Ki/Sh.

9.
Hortic Res ; 9: uhac110, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795394

RESUMO

The factors underlying the plant collapse of certain melon-pumpkin graft combinations are not fully understood. Our working hypothesis was that impairment of photoassimilates transport in incompatible combinations induces an imbalance in the homeostasis of root auxin (indole-3-acetic acid; IAA) and of cytokinins, probably triggering plant collapse. Root IAA and cytokinins levels in the presence and absence of fruit and changes in root and scion metabolites were investigated in compatible and incompatible combinations. We showed elevated levels of IAA, 2-oxoindole-3-acetic acid (IAA catabolite), indole-3-acetylaspartate (IAA conjugate), and cis-zeatin-type cytokinins, but low levels of trans-zeatin-type cytokinins in the roots of plants of the incompatible combination during fruit ripening. Similarly, during fruit ripening, the expression of the YUCCA genes, YUC2, YUC6, and YUC11 (required for auxin biosynthesis), the GRETCHEN-HAGEN3 gene (required for auxin conjugation), and the cytokinin oxidase/dehydrogenase 7 (CKX7) gene (regulates the irreversible degradation of cytokinin) was enhanced in the roots of plants of the incompatible combination. Moreover, in the incompatible combination the fruiting process restricted transport of photoassimilates to the rootstock and induces their accumulation in the scion. In addition, high levels of hydrogen peroxide and malondialdehyde and reduced activity of antioxidant enzymes were observed in the roots of the incompatible graft. Our results showed that the collapse of the incompatible graft combination during fruit ripening is closely associated with a dramatic accumulation of IAA in the roots, which probably elicits oxidative damage and disturbs the balance of IAA and cytokinins that is of critical importance in melon-pumpkin graft compatibility.

10.
Funct Plant Biol ; 48(12): 1277-1287, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34600598

RESUMO

Jojoba (Simmondsia chinensis (Link) Schneider) holds high industrial value and an extended cultivation trend. Despite its increased importance, there is a lack of fundamental information about its metabolic reserves and development. Our objective was to characterise metabolite allocation and fluctuations in the carbohydrate and nutrient balance of jojoba plants, as affected by fruit load and the plant's annual cycle. Metabolite profiles were performed for each organ. Soluble carbohydrates (SC) and starch concentrations were surveyed in underground and aboveground organs of high-yield and fruit-removed plants. Simultaneously, nitrogen, potassium and phosphorus were determined in the leaves to evaluate the plant's nutritional status. We found that sucrose and pinitol were the most abundant sugars in all jojoba organs. Each sugar had a 'preferred' organ: glucose was accumulated mainly in the leaves, sucrose and pinitol in woody branches, and fructose in the trunk wood. We found that fruit load significantly influenced the carbohydrate levels in green branches, trunk wood and thin roots. The phenological stage strongly affected the SC-starch balance. Among the examined minerals, only the leaf potassium level was significantly influenced by fruit load. We conclude that jojoba's nutrient and carbohydrate balance is affected by fruit load and the phenological stage, and describe the organ-specific metabolic reserves.


Assuntos
Frutas , Estado Nutricional , Metabolismo dos Carboidratos , Carboidratos , Folhas de Planta
11.
Plant Physiol Biochem ; 160: 94-105, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33485151

RESUMO

The Hylocereus species that are grown as exotic fruit crops are very often farmed under marginal agronomic conditions, which may include exposure to high temperatures. Here we present a pioneering investigation of grafting as an agro-technique to improve heat tolerance in Hylocereus. To this end, we studied the diploid species H. undatus, the tetraploid H. megalanthus and its di-haploid gamete-derived line 2719, and the interspecific-interploid tetraploid Z-10, all grafted onto H. undatus as the rootstock. Self-grafted, grafted and non-grafted plants were acclimated for one week (to obtain baseline values) and then exposed to heat stress (45/35 °C day/night) for three days, followed by a one-week recovery period under optimal temperatures (30/22 °C). A comparison of the physiological, biochemical and molecular performances of the grafted and self-grafted plants under heat stress and during the recovery period vs those of non-stressed plants (control; 30/22 °C) showed that the grafted and self-grafted plants performed better in most of the assessments: grafted and self-grafted plants recovered more rapidly from the heat stress and suffered far less stem damage. An unexpected - but important - finding that may have implications for other crop was that the self-grafted plants showed better performance than non-grafted plants throughout the trial. Our findings provide support for grafting as a strategy for coping with the stress induced by extremely high temperatures. This study thus paves the way for further investigations of grafting in Hylocereus as a valuable technique that will maintain crop productivity in the face of increasing worldwide temperatures.


Assuntos
Cactaceae/fisiologia , Horticultura/métodos , Temperatura Alta , Estresse Fisiológico , Cactaceae/classificação , Tetraploidia
12.
Plant Sci ; 306: 110852, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33775359

RESUMO

The effect of the rootstock on the acropetal and basipetal transport of photoassimilates and hormones was studied in the 'Kiran' (Ki) melon cultivar grafted onto pumpkin rootstocks with different degrees of compatibility. A complementary experiment was performed to compare the incompatible combination (as evidenced by plant collapse at the fruit ripening stage), designated Ki/r53, with self-grafted r53/r53 as a model compatible combination. Both experiments showed the accumulation of a number of amino acids, sugars, and sugar alcohols in the scion of the incompatible Ki/r53 grafts. Additionally, they showed a marked reduction of trans-zeatin-type cytokinins and an elevated content of cis-zeatin-type cytokinins in the rootstock, and the opposite pattern in the scion, hinting at the possible involvement of a hormonal signal for graft compatibility. There was no direct evidence of a blockage at the graft union, since hormone acropetal and basipetal trafficking was demonstrated for all combinations. Dye uptake experiments did not show xylem flow impairment. A possibly significant finding in the incompatible combination was the deposition of undifferentiated cells in the hollow space that replaces the pith region in melon and pumpkin. The link between the above findings and the collapse of the plants of the incompatible combination remains unclear.


Assuntos
Transporte Biológico/fisiologia , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/genética , Cucurbita/crescimento & desenvolvimento , Cucurbita/genética , Fotossíntese/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Fotossíntese/genética , Melhoramento Vegetal , Reguladores de Crescimento de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento
13.
Plants (Basel) ; 9(11)2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171790

RESUMO

Heterodichogamous reproduction in plants involves two flowering morphs, reciprocal in their timing of male and female sexual functions. The degree of synchrony in floral sex phase, within and between individuals of each morph, determines the flowers' potential fertilization partners. Complete within-morph synchrony enables across-morph mating alone, whereas unsynchronized floral sex phases may allow fertilization within a plant individual (geitonogamy) or within a morph. We documented the disruption of flowering synchrony in the heterodichogamous Ziziphus spina-christi towards the end of its seven-month flowering season. This desert tree has self-incompatible, protandrous, short-lived (2-day) flowers that open before dawn ('Early' morph) or around noon ('Late' morph). We counted flowers in the male and female phase on flowering branches that were sampled monthly during the 2016-2018 flowering seasons. In 2018, we also tagged flowers and followed their sex-phase distributions over two days at the start, middle, and end of the season. The switch to the female phase was delayed at the end-season (November-December), and 74% of the flowers did not develop beyond their male phase. Differences in male-phase duration resulted in asynchrony among flowers within each tree and among trees of both flowering morphs. Consequently, fertilization between trees of the same morph becomes potentially possible during the end-season. In controlled hand-pollination assays, some within-morph fertilizations set fruit. The end-season breakdown of synchronous flowering generates variability within morphs and populations. We suggest that this variability may potentially enable new mating combinations in a population and enhance its genetic diversity.

14.
Front Plant Sci ; 11: 954, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670340

RESUMO

Polyploidy-or chromosome doubling-plays a significant role in plant speciation and evolution. Much of the existing evidence indicates that fusion of unreduced (or 2n) gametes is the major pathway responsible for polyploid formation. In the early 1900s, a theory was put forward that the mechanism of "hybridization followed by chromosome doubling" would enable the survival and development of the hybrid zygote by providing each chromosome with a homolog with which to pair. However, to date there is only scant empirical evidence supporting this theory. In our previous study, interspecific-interploid crosses between the tetraploid Hylocereus megalanthus, as the female parent, and the diploid H. undatus, as the male parent, yielded only allopentaploids, allohexaploids, and 5x-and 6x-aneuploids instead of the expected allotriploids. No viable hybrids were obtained from the reciprocal cross. Since H. undatus underwent normal meiosis with regular pairing in the pollen mother cells and only reduced pollen grains were observed, the allohexaploids obtained supported the concept of "chromosome doubling." In this work, we report ploidy level, fruit morphology, and pollen viability and diameter in a group of putative hybrids obtained from an embryo rescue procedure following controlled H. megalanthus × H. undatus crosses, with the aim to elucidate, for the first time, the timing and developmental stage of the chromosome doubling. As in our previous report, no triploids were obtained, but tetraploids, pentaploids, hexaploids, and 5x- and 6x-aneuploids were found in the regenerated plants. The tetraploids exhibited the morphological features of the maternal parent and could not be considered true hybrids. Based on our previous studies, we can assume that the pentaploids were a result of a fertilization event between one unreduced (2n) female gamete from the tetraploid H. megalanthus and a normal (n) haploid male gamete from H. undatus. All the allohexaploids obtained from the embryo rescue technique where those that regenerated from fertilized ovules 10 days after pollination (at the pro-embryo stage), showing that the chromosome doubling event occurred at a very early development stage, i.e., at the zygote stage or shortly after zygote formation. These allohexaploids thus constitute empirical evidence of "hybridization followed by chromosome doubling."

15.
PLoS One ; 15(1): e0227192, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31923191

RESUMO

BACKGROUND: Rootstock has a significant impact on plant growth and development, including fruit maturation. However, the existence of mutual interaction between scion and rootstock is often neglected. To explore the origin of different fruit quality traits in citrus, we studied the effect of rootstock and the reciprocal interaction between scion and rootstock of nine combinations; three mandarin varieties grafted on three different rootstocks. We analyzed the metabolic profile of juice via gas and liquid chromatography-mass spectrometry (GC-MS and LC-MS, respectively). Additionally, we profiled phloem sap composition in the scion and the rootstock. Quality traits of fruit and their physio-chemical characteristics were also evaluated. RESULTS: For all three cultivars, rootstock was found to affect fruit yield and biochemical fruit quality parameters (sugar and acidity) in interactions with the scions. In mandarin juice, eight of 48 compounds (two primary and six secondary) were related directly to the rootstock, and another seven (one primary and six secondary) were interactively affected by scion and rootstock. In scion and rootstock sap, six and 14 of 53 and 55 primary metabolites, respectively, were directly affected by the rootstock, while 42 and 33 were affected by rootstock interactively with scion, respectively. CONCLUSION: In this work, we show for the first time a reciprocal effect between rootstock and scion. Based on our results, the scion and rootstock interaction might be organ, distance or time dependent.


Assuntos
Citrus/crescimento & desenvolvimento , Citrus/metabolismo , Sucos de Frutas e Vegetais/análise , Metabolômica/métodos , Floema/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Ácido Ascórbico/análise , Frutas/crescimento & desenvolvimento , Israel , Metaboloma , Açúcares/análise
16.
Plant Physiol Biochem ; 153: 30-39, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32474384

RESUMO

High temperatures limit the successful cultivation of the Hylocereus species on a global basis. We aimed to investigate the degree of heat tolerance in three species, namely, the diploids Hylocereus undatus and H. monacanthus, and the tetraploid H. megalanthus, and nine of their interspecific-interploid hybrids. Rooted cuttings were exposed to heat stress (45/35 °C) or control conditions (25/20 °C) for eight days. Initially, the plants were screened for their tolerance to heat stress and ranked into four heat tolerance categories: good tolerance, moderate tolerance, low tolerance, or sensitive, according to the decrease in the maximum quantum efficiency of photosystem II (Fv/Fm) and visual stem damage. The physiological and biochemical performances of the parental species and of three hybrids representing three different heat-tolerance categories were further analyzed in depth. H. megalanthus (classified as heat sensitive) showed a 65% decrease in Fv/Fm and severe visual stem damage, along with a marked reduction in total chlorophyll content, a large increase in malondialdehyde, and inhibition of catalase activity. H. undatus and H. monacanthus, (classified as low-tolerance species) exhibited slight stem "liquification." The good-tolerance hybrid Z-16 exhibited the best performance under heat stress (21% decrease in Fv/Fm) and the absence of stem damage, coupled with a small decrease in total chlorophyll content, a slight increase in malondialdehyde, high antioxidant activity, and proline accumulation progressing with time. Our findings revealed that most of the hybrids performed better than their parental species, indicating that our breeding programs can provide Hylocereus cultivars suitable for cultivation in heat-challenging regions.


Assuntos
Cactaceae/fisiologia , Temperatura Alta , Estresse Fisiológico , Clorofila/análise , Complexo de Proteína do Fotossistema II/fisiologia , Melhoramento Vegetal
17.
Sex Plant Reprod ; 22(2): 73-85, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20033458

RESUMO

Floral development of the synchronous dichogamous species Ziziphus mauritiana, as followed by light and scanning electron microscopy (SEM), was divided into 11 stages using a series of landmark events. Main cellular events happen synchronously in the female and the male structures, such as meiosis in micro- and macrosporocyte cells, tetrad microspore formation and appearance of the functional megaspore cell, and onset of embryo sac differentiation coinciding with mitosis in the microspores. The last stage was characterized by anthesis and continued development of the flower, beginning with anther dehiscence (male phase) and proceeding to the female phase, which was characterized by style elongation. Flowers exhibit synchronous protandrous dichogamy; anthesis takes place in the morning (group A, e.g., clone Q-29) and afternoon (group B, e.g., clone B5/4). Stigma receptivity started after the male phase and occurred synchronously and complementarily with pollen dispersal in the two clones. Pollen viability and production were similar in the two clones, but the pollen diameter of Q-29 was significantly larger than that of B5/4. This study provides the basis for understanding the biological mechanisms regulating floral development, thus expanding the prospects for Z. mauritiana breeding programs and for further molecular and genetic studies of this species.


Assuntos
Flores/crescimento & desenvolvimento , Ziziphus/crescimento & desenvolvimento , Flores/embriologia , Flores/ultraestrutura , Microscopia Eletrônica de Varredura , Óvulo Vegetal/embriologia , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/ultraestrutura , Pólen/embriologia , Pólen/crescimento & desenvolvimento , Pólen/ultraestrutura , Ziziphus/embriologia , Ziziphus/ultraestrutura
18.
Plant Cell Rep ; 28(5): 719-26, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19266203

RESUMO

Gynogenesis was investigated on the allotetraploid Selenicereus megalanthus and the diploid Hylocereus polyrhizus and Hylocereus undatus vine cactus species. Unpollinated ovules from developing flower buds containing microspores at middle uninucleate developmental stage were cultured on MS basal medium containing 2,4-D/TDZ with different sucrose concentrations. Ovule size increased under dark culture conditions in all the three species and the level of response was species and sucrose concentration dependent. The best responses were achieved in the two S. megalanthus accessions, E-123 and J-80, at 0.18 and 0.26 M sucrose. Only ovule enlargement was obtained in H. undatus and both ovule enlargement and callus were obtained in H. polyrhizus. Development in both species ceased and embryoids were not formed. Plant regeneration was directly and indirectly obtained in both S. megalanthus accessions. Ploidy level was determined for a total of 29 S. megalanthus gynogenic plants using flow cytometry: 15 were found to be dihaploid (plants with the gametophytic chromosome number) and the other 14 were found to have higher ploidy levels. This is the first report of successful gynogenesis in Cactaceae. The dihaploids of S. megalanthus successfully produced by ovule culture techniques opens new perspectives in vine cacti breeding.


Assuntos
Cactaceae/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Ploidias , Cactaceae/embriologia , Cactaceae/genética , Meios de Cultura , Citometria de Fluxo , Flores/embriologia , Regeneração , Especificidade da Espécie , Sacarose
19.
Front Plant Sci ; 10: 1315, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681393

RESUMO

Dioecy, the specialization of individuals into either male-only or female-only sexual function, has multiple evolutionary origins in plants. One proposed ancestral mating system is heterodichogamy, two morphs of cross-fertilizing hermaphrodite flowers that differ in their timing of flowering. Previous research suggested that small specializations in these morphs' functional genders could facilitate their evolution into separate sexes. We tested the possible role of pollinators in driving such specializations. Ziziphus spina-christi is an insect-pollinated heterodichogamous tree with self-incompatible flowers and two sympatric flowering morphs. We compared the flower development patterns, floral food rewards, pollinator visits, and fruit production between the two morphs. Male-phase flowers of Z. spina-christi's "Early" and "Late" morphs open before dawn and around noon, respectively, and transition into female-phase 7-8 h later. Flowers of both morphs contain similar nectar and pollen rewards, and receive visits by flies (their ancestral pollinators) at similar rates, mostly during the morning. Consequently, the Early morph functions largely as pollen donor. The Late morph, functioning as female in the morning, produces more fruit. We developed an evolutionary probabilistic model, inspired by Z. spina-christi's reproductive system, to test whether pollinator visit patterns could potentially play a role in an evolutionary transition from heterodichogamy towards dioecy. The model predicts that reproductive incompatibility within flowering morphs promotes their evolution into different sexes. Furthermore, the pollinators' morning activity drives the Early and Late morphs' specialization into male and female functions, respectively. Thus, while not required for transitioning from heterodichogamy to dioecy, pollinator-mediated selection is expected to influence which sexual specialization evolves in each of the flowering morphs.

20.
Plant Methods ; 15: 70, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333756

RESUMO

BACKGROUND: A suitable reference gene is an important prerequisite for guarantying accurate and reliable results in quantitative real-time PCR (qRT-PCR) analyses. However, there is no absolute universality in reference genes among different species. It's hard to find an ideal reference gene to fit for different tissues and growth periods. Pitaya (Hylocereus) is commercially produced as a new fruit crop at a large scale in tropical and subtropical regions. To date, there is no report on the identification of the most reliable reference genes for qRT-PCR normalization in pitaya. RESULTS: In this study, six candidate reference genes i.e. Actin(1), GAPDH, UBC(1), UBC(2) EF1-α(1) and histone(1) were selected from thirty-nine typical candidate reference genes to determine the most stable reference genes for qRT-PCR normalization in different tissues, temperature stresses and fruit developmental stages of pitaya. Among the six candidate reference genes, Actin(1) and EF1-α(1) were the most stable gene according to calculations of three statistical methods (GeNorm, NormFinder and BestKeeper) while UBC(1) and UBC(2) showed the lowest expression stability. The six candidate reference genes were further validated by comparing expression profiles of key genes related to betalain biosynthesis at flesh coloration stages of Guanhuahong (Hylocereus monacanthus) and Guanhuabai (H. undatus) pitayas. Actin(1) was recommended the best reference gene for accurate normalization of qRT-PCR data. CONCLUSIONS: In this study, the stability of the selected reference genes for normalizing the qRT-PCR data were identified from pitaya. Actin(1) was the most stably expressed genes in different tissues and fruit developmental stages in pitaya. The present work provides the first data of reference gene identification for pitaya and will facilitate further studies in molecular biology and gene function on Hylocereus and other closely related species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA