Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 147: 106779, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32135309

RESUMO

Rapid diversification limits our ability to resolve evolutionary relationships and examine diversification history, as in the case of the Neotropical cotingas. Here we present an analysis with complete taxon sampling for the cotinga genera Lipaugus and Tijuca, which include some of the most range-restricted (e.g., T. condita) and also the most widespread and familiar (e.g., L. vociferans) forest birds in the Neotropics. We used two datasets: (1) Sanger sequencing data sampled from eight loci in 34 individuals across all described taxa and (2) sequence capture data linked to 1,079 ultraconserved elements and conserved exons sampled from one or two individuals per species. Phylogenies estimated from the Sanger sequencing data failed to resolve three nodes, but the sequence capture data produced a well-supported tree. Lipaugus and Tijuca formed a single, highly supported clade, but Tijuca species were not sister and were embedded within Lipaugus. A dated phylogeny confirmed Lipaugus and Tijuca diversified rapidly in the Miocene. Our study provides a detailed evolutionary hypothesis for Lipaugus and Tijuca and demonstrates that increasing genomic sampling can prove instrumental in resolving the evolutionary history of recent radiations.


Assuntos
Bases de Dados Genéticas , Loci Gênicos , Genômica , Passeriformes/genética , Animais , Evolução Biológica , Especiação Genética , Geografia , Filogenia , Análise de Sequência de DNA
2.
J Anim Ecol ; 79(6): 1181-92, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20642767

RESUMO

1. Methods that assess patterns of phylogenetic relatedness, as well as character distribution and evolution, allow one to infer the ecological processes involved in community assembly. Assuming niche conservatism, assemblages should shift from phylogenetic clustering to evenness with decreasing geographic scale because the relative importance of mechanisms that shape assemblages is hypothesized to be scale-dependent. Whereas habitat filtering is more likely to act at regional scales because of increased habitat heterogeneity that allows sorting of ecologically similar species in contrasting environments, competition is more likely to act at local scales because low habitat heterogeneity provides few opportunities for niche partitioning. 2. We used species lists to assess assemblage composition, data on ecologically-relevant traits, and a molecular phylogeny, to examine the phylogenetic structure of antbird (Thamnophilidae) assemblages at three different geographical scales: regional (ecoregions), intermediate (100-ha plots) and local (mixed-flocks). In addition, we used patterns of phylogenetic beta diversity and beta diversity to separate the factors that structure antbird assemblages at regional scales. 3. Contrary to previous findings, we found a shift from phylogenetic evenness to clustering with decreasing geographical scale. We argue that this does not reject the hypothesis that habitat filtering is the predominant force in regional community assembly, because analyses of trait evolution and structure indicated a lack of niche conservatism in antbirds. 4. In some cases, phylogenetic evenness at regional scales can be an effect of historical biogeographic processes instead of niche-based processes. However, regional patterns of beta diversity and phylogenetic beta diversity suggested that phylogenetic structure in our study cannot be explained by the history of speciation and dispersal of antbirds, further supporting the habitat-filtering hypothesis. 5. Our analyses suggested that competitive interactions might not play an important role locally, which would provide a plausible explanation for the high alpha diversity of antbirds in Amazonia. 6. Finally, we emphasize the importance of including trait information in studies of phylogenetic community structure to adequately assess the mechanisms that determine species co-existence.


Assuntos
Aves/genética , Aves/fisiologia , Ecossistema , Filogenia , Animais , Comportamento Alimentar
3.
Cladistics ; 25(5): 429-467, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34879622

RESUMO

Phylogenetic relationships among the Tyrannides were assessed using over 4000 base pairs of nuclear recombination activating 1 (RAG-1) and 2 (RAG-2) DNA sequence data from about 93% of all described genera, which represents the most complete assessment of relationships for this diverse New World radiation to date. With this sampling we propose a significantly expanded interpretation of higher-level relationships within the group. The Tyrannides are shown to be comprised of six major lineages, all of which represent traditional family-level taxa (sensuFitzpatrick, 2004a and Snow, 2004a,b; del Hoyo et al., 2004): (i) manakins (Pipridae); (ii) cotingas (Cotingidae); (iii) the sharpbill (Oxyruncus) + onychorhynchine flycatchers (Onychorhynchini); (iv) tityrines (Tityridae); (v) rhynchocycline flycatchers (Rhynchocyclidae); and (vi) the tyrant flycatchers (Tyrannidae). In addition, the RAG data recovered isolated lineages with uncertain relationships, including Neopipo, Platyrinchus, Piprites, and Tachuris. The Pipridae are the sister-group to all the other Tyrannides. Within the latter, the clade ((Oxyruncidae + Tityridae) + Cotingidae) is the sister-group of the Tyrannoidea. Within the Tyrannoidea, the Rhynchocyclidae and their allies are sisters to Neopipo + Tyrannidae. Using our phylogenetic hypothesis, we propose the first comprehensive phylogenetic classification that attempts to achieve isometry between the tree and a classification scheme using subordination and phyletic sequencing. This study thus provides a phylogenetic framework for understanding the evolution of this diverse New World assemblage, and identifies many avenues for further systematic study. © The Willi Hennig Society 2009.

4.
Cladistics ; 25(4): 386-405, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34879609

RESUMO

The infraorder Furnariides is a diverse group of suboscine passerine birds comprising a substantial component of the Neotropical avifauna. The included species encompass a broad array of morphologies and behaviours, making them appealing for evolutionary studies, but the size of the group (ca. 600 species) has limited well-sampled higher-level phylogenetic studies. Using DNA sequence data from the nuclear RAG-1 and RAG-2 exons, we undertook a phylogenetic analysis of the Furnariides sampling 124 (more than 88%) of the genera. Basal relationships among family-level taxa differed depending on phylogenetic method, but all topologies had little nodal support, mirroring the results from earlier studies in which discerning relationships at the base of the radiation was also difficult. In contrast, branch support for family-rank taxa and for many relationships within those clades was generally high. Our results support the Melanopareidae and Grallariidae as distinct from the Rhinocryptidae and Formicariidae, respectively. Within the Furnariides our data contradict some recent phylogenetic hypotheses and suggest that further study is needed to resolve these discrepancies. Of the few genera represented by multiple species, several were not monophyletic, indicating that additional systematic work remains within furnariine families and must include dense taxon sampling. We use this study as a basis for proposing a new phylogenetic classification for the group and in the process erect new family-group names for clades having high branch support across methods.

6.
Mol Phylogenet Evol ; 45(1): 1-13, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17768072

RESUMO

One of the most novel foraging strategies in Neotropical birds is army-ant-following, in which birds prey upon arthropods and small vertebrates flushed from the forest floor by swarm raids of the army-ant Eciton burchellii. This specialization is most developed in the typical antbirds (Thamnophilidae) which are divisible into three specialization categories: (1) those that forage at swarms opportunistically as army-ants move through their territories (occasional followers), (2) those that follow swarms beyond their territories but also forage independently of swarms (regular followers), and (3) those that appear incapable of foraging independently of swarms (obligate followers). Although army-ant-following is one of the great spectacles of tropical forests, basic questions about its evolution remain unaddressed. Using a strongly resolved molecular phylogeny of the typical antbirds, we found that army-ant-following is phylogenetically conserved, with regular following having evolved only three times, and that the most likely evolutionary progression was from least (occasional) to more (regular) to most (obligate) specialized, with no reversals from the obligate state. Despite the dependence of the specialists on a single ant species, molecular dating indicates that army-ant-following has persisted in antbirds since the late Miocene. These results provide the first characterization of army-ant-following as an ancient and phylogenetically conserved specialization.


Assuntos
Formigas , Comportamento Animal/fisiologia , Evolução Biológica , Aves/genética , Especiação Genética , Filogenia , Clima Tropical , Animais , Formigas/fisiologia , Aves/fisiologia , Ecossistema , Cadeia Alimentar , Variação Genética , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA