Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Bioorg Med Chem Lett ; 29(6): 832-835, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30711393

RESUMO

Bisorbicillinol, which is isolated from Trichoderma sp. USF2690, is an inhibitor of ß-hexosaminidase release and tumor necrosis factor (TNF)-α, and Interleukin (IL)-4 secretion from rat basophilic leukemia (RBL-2H3) cells, with IC50 values of 2.8 µM, 2.9 µM and 2.8 µM respectively. We showed that the inhibitory mechanism of ß-hexosaminidase release and TNF-α secretion involved inhibition of Lyn, a tyrosine kinase. The inhibitory activities of bisorbicillinol indicate that this compound is a new candidate anti-allergic agent.


Assuntos
Antialérgicos/farmacologia , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinases da Família src/antagonistas & inibidores , Animais , Degranulação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Mastócitos/efeitos dos fármacos , Ratos , Receptores de IgE/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/antagonistas & inibidores , beta-N-Acetil-Hexosaminidases/antagonistas & inibidores
2.
Biosci Biotechnol Biochem ; 83(3): 381-390, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30475097

RESUMO

Palytoxin analogs are marine toxins with large complex polyol structures. A benthic dinoflagellate Ostreopsis siamensis produces more than ten palytoxins (ostreocins, OSTs). The limited sample availability of minor OSTs restricts the definition of their chemical structures. The present investigation characterizes structures of two minor OSTs, i.e., ostreocin-A (OSTA) and ostreocin-E1 (OSTE1), using ostreocin-D (OSTD) as a reference compound, by liquid chromatography/quadrupole-time-of-flight mass spectrometry. The molecular formulas of OSTA and OSTE1 were C127H219N3O54 and C127H217N3O52, respectively. Compared to OSTD, OSTA has an extra oxygen atom whereas OSTE1 lacks one oxygen atom and two hydrogen atoms. The MS/MS experiments (precursor ions: [M + H]+ and [M-H]-) suggested a hydroxyl substitution at C82 in OSTA and alteration(s) between C53 and C100 in OSTE1. Further analysis of structural details in OSTE1 was performed through a pseudo-MS3 experiment (precursor ion: m/z 1432.748). Accordingly, the planar structures of OSTA and OSTE1 were assigned to 42,82-dihydroxy-3,26-didemethyl-19,44-dideoxypalytoxin and 42-hydroxy-3,26-didemethyl-19,44,73-trideoxypalytoxin-72-ene, respectively. Abbreviations:CID: collision induced dissociation; HR-LC/MS/MS: high-resolution liquid chromatography/tandem mass spectrometry; LC/ESI/Q-TOF MS: liquid chromatography/quadrupole time-of-flight mass spectrometry equipped with an electrospray ionization source; NMR: nuclear magnetic resonance; OSTs: ostreocins; OSTA: ostreocin-A; OSTB: ostreocin-B; OSTD: ostreocin-D; OSTE1: ostreocin-E1; OVTX-a: ovatoxin-a; OVTXs: ovatoxins; PLTX: palytoxin.


Assuntos
Acrilamidas/química , Venenos de Cnidários/biossíntese , Venenos de Cnidários/química , Dinoflagellida/metabolismo , Cromatografia Líquida , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
3.
Rapid Commun Mass Spectrom ; 32(12): 1001-1007, 2018 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-29611245

RESUMO

RATIONALE: Ostreocin-B is a new palytoxin congener of comparable complexity. Elucidation of the chemical structure by nuclear magnetic resonance has been hampered due to limited sample availability. More importantly, the dihedral angles of protons at the base of the hydroxyl groups on the ring structures are predicted to produce little couplings and thus disrupt connectivity. The present investigation solved the problem through mass spectrometry. METHODS: Structural elucidation was performed by high-performance liquid chromatograph coupled to a quadrupole time-of-flight mass spectrometer equipped with an electrospray ionization source operated in positive and negative ion mode. Measurement parameters were optimized to achieve high sensitivity and a high ratio of singly charged ions. Ostreocin-D (C127 H219 N3 O53 ), another palytoxin congener possessing an unambiguously determined structure, was used as a template. RESULTS: The molecular formula of ostreocin-B, C127 H219 N3 O54 , indicates that it has one more oxygen atom than ostreocin-D. Comparison of the product ion spectra in negative ion mode indicates the occurrence of hydroxyl substitution at C44 in ostreocin-B, unlike in ostreocin-D. Positive ion spectra also support the 44-OH substructure by producing conjugated polyenes ascribable to the sequential loss of hydroxyls on the cyclic hemiacetal. CONCLUSIONS: The planar structure of ostreocin-B is assigned to 42-hydroxy-3,26-didemethyl-19-deoxypalytoxin (=44-hydroxyostreocin-D). The method used in this study is an excellent tool to obtain structural information on interspecies and intrastrain variation of palytoxin congeners in marine organisms.

4.
J Agric Food Chem ; 72(23): 12967-12974, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38814790

RESUMO

Structure-activity relationships of diazinoyl nicotinic insecticides (diazinoyl isomers and 5- or 6-substituted pyrazin-2-oyl analogues) are considered in terms of affinity to the insect nicotinic acetylcholine receptor (nAChR) and insecticidal activity against the imidacloprid-resistant brown planthopper. Among the test compounds, 3-(6-chloropyridin-3-ylmethyl)-2-(pyrazinoyl)iminothiazoline shows the highest potency in nAChR affinity and insecticidal activity. Aplysia californica acetylcholine binding protein (AChBP) mutants (Y55W + Q57R and Y55W + Q57T) are utilized to compare molecular recognition of nicotinic insecticides with diverse pharmacophores. N-nitro- or N-cyanoimine imidacloprid or acetamiprid, respectively, exhibits a high affinity to these AChBP mutants at a similar potency level. Intriguingly, the pyrazin-2-oyl analogue has a higher affinity to AChBP Y55W + Q57R than that to Y55W + Q57T, thereby indicating that pyrazine nitrogen atoms contact Arg57 guanidinium and Trp55 indole NH. Furthermore, nicotine prefers AChBP Y55W + Q57T over Y55W + Q57R, conceivably suggesting that the protonated nicotine is repulsed by Arg57 guanidinium, consistent with its inferior potency to insect nAChR.


Assuntos
Hemípteros , Proteínas de Insetos , Inseticidas , Neonicotinoides , Receptores Nicotínicos , Animais , Inseticidas/química , Inseticidas/farmacologia , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Hemípteros/química , Hemípteros/genética , Hemípteros/efeitos dos fármacos , Hemípteros/metabolismo , Relação Estrutura-Atividade , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/química , Neonicotinoides/química , Neonicotinoides/farmacologia , Neonicotinoides/metabolismo , Nitrocompostos/química , Nitrocompostos/farmacologia , Nitrocompostos/metabolismo , Aplysia/química , Aplysia/metabolismo , Aplysia/genética , Nicotina/química , Nicotina/metabolismo , Nicotina/análogos & derivados , Nicotina/farmacologia
5.
Curr Res Insect Sci ; 4: 100066, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37559797

RESUMO

Nociception is the sensory perception of noxious chemical stimuli. Repellent behavior to avoid noxious stimuli is indispensable for survival, and this mechanism has been evolutionarily conserved across a wide range of species, from mammals to insects. The transient receptor potential ankyrin 1 (TRPA1) channel is one of the most conserved noxious chemical sensors. Here, we describe the heterologous stable expression of Tribolium castaneum TRPA1 (TcTRPA1) in human embryonic kidney (HEK293) cells. The intracellular Ca2+ influx was measured when two compounds, citronellal and l-menthol, derived from plant essential oils, were applied in vitro using a fluorescence assay. The analysis revealed that citronellal evoked Ca2+ influx dose-dependently for TcTRPA1, whereas l-menthol did not. In combination with our present and previous results of the avoidance-behavioral assay at the organism level, we suggest that TcTRPA1 discriminates between these two toxic compounds, and diversification in the chemical nociception selectivity has occurred in TRPA1 channel among insect taxa.

6.
J Toxicol Sci ; 48(7): 421-428, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37394655

RESUMO

Organophosphate (OP) agents are continuously utilized in large amount throughout the globe for crop protection and public health, thereby creating a potential concern on human health. OP agent as an anticholinesterase also acts on the endocannabinoid (EC)-hydrolases, i.e., fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), to reveal unexpected adverse effects including ADHD-like behaviors in adolescent male rats. The present investigation examines a hypothesis that OP compound inhibiting the EC-hydrolase(s) dysregulates the EC-signaling system, triggering apoptosis in neuronal cells. Ethyl octylphosphonofluoridate (EOPF), as an OP probe, preferably acts on FAAH over MAGL in intact NG108-15 cells. Anandamide (AEA), an endogenous FAAH substrate, is cytotoxic in a concentration-dependent manner, although 2-arachidonoylglycerol, an endogenous MAGL substrate, gives no effect in the concentrations examined here. EOPF pretreatment markedly enhances AEA-induced cytotoxicity. Interestingly, the cannabinoid receptor blocker AM251 diminishes AEA-induced cell death, whereas AM251 does not prevent the cell death in the presence of EOPF. The consistent results are displayed in apoptosis markers evaluation (caspases and mitochondrial membrane potential). Accordingly, FAAH inhibition by EOPF suppresses AEA-metabolism, and accumulated excess AEA overstimulates both the cannabinoid receptor- and mitochondria-mediated apoptotic pathways.


Assuntos
Endocanabinoides , Organofosfatos , Ratos , Masculino , Humanos , Animais , Adolescente , Endocanabinoides/farmacologia , Endocanabinoides/metabolismo , Apoptose
7.
Sci Rep ; 12(1): 15270, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088473

RESUMO

The sensory perception of irritant chemicals results in escape and repellency behavioral patterns in insects. Transient receptor potential channels are cation channels that function as sensor proteins for several types of signals, such as light, sound, temperature, taste, as well as chemical and physical stimuli; among these, the TRPA channel is widely conserved and activated by irritant chemicals. Certain plant-derived essential oils (EOs), produced by secondary metabolism, are mixtures of volatile compounds, which are used as repellents because they contain environmentally sustainable ingredients. Citronellal, which is present in citronella EO from Cymbopogon species, is a potentially viable insect repellent; however, the repellency capability against coleopteran beetles remains limited. We investigated the citronellal-derived repellency behavior for the red flour beetle Tribolium castaneum, in which TcTRPA1 and odorant receptor co-receptor (Orco) expressions were mediated by RNA interference. Area-preference tests showed dose-dependent repellency behavior for citronellal; additionally, both TcTRPA1 and TcOrco double-strand RNA (dsRNA) micro-injection showed clear TcTRPA1 and TcOrco transcript reductions, and only TcTRPA1 dsRNA treatment significantly impaired repellency behavior. The relative expression level of the TcTRPA1 transcripts, evaluated by quantitative reverse-transcription PCR (qRT-PCR), revealed dominant expression in the antennae, indicating the antennae-expressed TcTRPA1-mediated repellency behavior.


Assuntos
Besouros , Cymbopogon , Repelentes de Insetos , Óleos Voláteis , Tribolium , Animais , Repelentes de Insetos/química , Irritantes , Óleos Voláteis/química , RNA de Cadeia Dupla
8.
J Occup Health ; 63(1): e12218, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33779022

RESUMO

OBJECTIVES: The comprehensive detection of environmental chemicals in biospecimens, an indispensable task in exposome research, is advancing. This study aimed to develop an exposomic approach to identify urinary metabolites of organophosphate (OP) pesticides, specifically cadusafos and prothiofos metabolites, as an example chemical group, using an original metabolome dataset generated from animal experiments. METHODS: Urine samples from 73 university students were analyzed using liquid chromatography-high-resolution mass spectrometry. The metabolome data, including the exact masses, retention time (tR ), and tandem mass spectra obtained from the human samples, were compared with the existing reference databases and with our original metabolome dataset for cadusafos and prothiofos, which was produced from mice to whom two doses of these OPs were orally administered. RESULTS: Using the existing databases, one chromatographic peak was annotated as 2,4-dichlorophenol, which could be a prothiofos metabolite. Using our original dataset, one peak was annotated as a putative cadusafos metabolite and three peaks as putative prothiofos metabolites. Of these, all three peaks suggestive of prothiofos metabolites, 2,4-dichlorophenol, 3,4,5-trihydroxy-6-(2,4-dichlorophenoxy) oxane-2-carboxylic acid, and (2,4-dichlorophenyl) hydrogen sulfate were confirmed as authentic compounds by comparing their peak data with both the original dataset and peak data of the standard reagents. The putative cadusafos metabolite was identified as a level C compound (metabolite candidate with limited plausibility). CONCLUSIONS: Our developed method successfully identified prothiofos metabolites that are usually not a target of biomonitoring studies. Our approach is extensively applicable to various environmental contaminants beyond OP pesticides.


Assuntos
Monitoramento Ambiental/métodos , Metabolômica/métodos , Organotiofosfatos/urina , Compostos Organotiofosforados/urina , Praguicidas/urina , Animais , Cromatografia Líquida , Bases de Dados Factuais , Humanos , Metaboloma , Camundongos , Exposição Ocupacional/análise , Valores de Referência , Espectrometria de Massas em Tandem
9.
J Agric Food Chem ; 69(33): 9551-9556, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34374535

RESUMO

A novel insecticide flupyrimin (FLP) with a trifluoroacetyl pharmacophore acts as an antagonist at the insect nicotinic acetylcholine receptor (nAChR). This investigation examines a hypothesis that the FLP C(O)CF3 moiety is primarily recognized by the ß subunit-face in the ligand-binding pocket (interface between α and ß subunits) of the insect nAChR. Accordingly, we evaluate the atomic interaction between a fluorine atom of FLP and the partnering amino acid side chain on the ß subunit employing a recombinant hybrid nAChR consisting of aphid Mpα2 and rat Rß2 subunits (with a mutation at T77 on the Rß2). The H-donating T77R, T77K, T77N, or T77Q nAChR enhances the FLP binding potency relative to that of the wild-type receptor, whereas the affinity of neonicotinoid imidaclprid (IMI) with a nitroguanidine pharmacophore remains unchanged. These results facilitate the establishment of the unique FLP molecular recognition at the Mpα2/Mpß1 interface structural model, thereby underscoring a distinction in its binding mechanism from IMI.


Assuntos
Afídeos , Inseticidas , Receptores Nicotínicos , Animais , Insetos , Neonicotinoides , Nitrocompostos , Ratos , Receptores Nicotínicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA