Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Exp Physiol ; 109(3): 405-415, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37847495

RESUMO

Mechanical load is one of the main determinants of cardiac structure and function. Mechanical load is studied in vitro using cardiac preparations together with loading protocols (e.g., auxotonic, isometric). However, such studies are often limited by reductionist models and poorly simulated mechanical load profiles. This hinders the physiological relevance of findings. Living myocardial slices have been used to study load in vitro. Living myocardial slices (LMS) are 300-µm-thick intact organotypic preparations obtained from explanted animal or human hearts. They have preserved cellular populations and the functional, structural, metabolic and molecular profile of the tissue from which they are prepared. Using a three-element Windkessel (3EWK) model we previously showed that LMSs can be cultured while performing cardiac work loops with different preload and afterload. Under such conditions, LMSs remodel as a function of the mechanical load applied to them (physiological load, pressure or volume overload). These studies were conducted in commercially available length actuators that had to be extensively modified for culture experiments. In this paper, we demonstrate the design, development and validation of a novel device, MyoLoop. MyoLoop is a bioreactor that can pace, thermoregulate, acquire and process data, and chronically load LMSs and other cardiac tissues in vitro. In MyoLoop, load is parametrised using a 3EWK model, which can be used to recreate physiological and pathological work loops and the remodelling response to these. We believe MyoLoop is the next frontier in basic cardiovascular research enabling reductionist but physiologically relevant in vitro mechanical studies.


Assuntos
Reatores Biológicos , Coração , Animais , Humanos , Miocárdio , Projetos de Pesquisa
2.
Small ; 18(36): e2202303, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35770803

RESUMO

Non-viral vectors represent versatile and immunologically safer alternatives for nucleic acid delivery. Nanoneedles and high-aspect ratio nanostructures are unconventional but interesting delivery systems, in which delivery is mediated by surface interactions. Herein, nanoneedles are synergistically combined with polysaccharide-polyplex nanofilms and enhanced transfection efficiency is observed, compared to polyplexes in suspension. Different polyplex-polyelectrolyte nanofilm combinations are assessed and it is found that transfection efficiency is enhanced when using polysaccharide-based polyanions, rather than being only specific for hyaluronic acid, as suggested in earlier studies. Moreover, results show that enhanced transfection is not mediated by interactions with the CD44 receptor, previously hypothesized as a major mechanism mediating enhancement via hyaluronate. In cardiac tissue, nanoneedles are shown to increase the transfection efficiency of nanofilms compared to flat substrates; while in vitro, high transfection efficiencies are observed in nanostructures where cells present large interfacing areas with the substrate. The results of this study demonstrate that surface-mediated transfection using this system is efficient and safe, requiring amounts of nucleic acid with an order of magnitude lower than standard culture transfection. These findings expand the spectrum of possible polyelectrolyte combinations that can be used for the development of suitable non-viral vectors for exploration in further clinical trials.


Assuntos
Técnicas de Transferência de Genes , Ácidos Nucleicos , Terapia Genética/métodos , Polieletrólitos , Transfecção
3.
Int J Mol Sci ; 23(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36142853

RESUMO

Engagement of the sarcoplasmic reticulum (SR) Ca2+ stores for excitation-contraction (EC)-coupling is a fundamental feature of cardiac muscle cells. Extracellular matrix (ECM) proteins that form the extracellular scaffolding supporting cardiac contractile activity are thought to play an integral role in the modulation of EC-coupling. At baseline, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) show poor utilisation of SR Ca2+ stores, leading to inefficient EC-coupling, like developing or human CMs in cardiac diseases such as heart failure. We hypothesised that integrin ligand-receptor interactions between ECM proteins and CMs recruit the SR to Ca2+ cycling during EC-coupling. hiPSC-CM monolayers were cultured on fibronectin-coated glass before 24 h treatment with fibril-forming peptides containing the integrin-binding tripeptide sequence arginine-glycine-aspartic acid (2 mM). Micropipette application of 40 mM caffeine in standard or Na+/Ca2+-free Tyrode's solutions was used to assess the Ca2+ removal mechanisms. Microelectrode recordings were conducted to analyse action potentials in current-clamp. Confocal images of labelled hiPSC-CMs were analysed to investigate hiPSC-CM morphology and ultrastructural arrangements in Ca2+ release units. This study demonstrates that peptides containing the integrin-binding sequence arginine-glycine-aspartic acid (1) abbreviate hiPSC-CM Ca2+ transient and action potential duration, (2) increase co-localisation between L-type Ca2+ channels and ryanodine receptors involved in EC-coupling, and (3) increase the rate of SR-mediated Ca2+ cycling. We conclude that integrin-binding peptides induce recruitment of the SR for Ca2+ cycling in EC-coupling through functional and structural improvements and demonstrate the importance of the ECM in modulating cardiomyocyte function in physiology.


Assuntos
Células-Tronco Pluripotentes Induzidas , Retículo Sarcoplasmático , Arginina/metabolismo , Ácido Aspártico/metabolismo , Cafeína/farmacologia , Cálcio/metabolismo , Fibronectinas/metabolismo , Glicina/metabolismo , Humanos , Integrinas/metabolismo , Ligantes , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
4.
Pflugers Arch ; 473(7): 1117-1136, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33855631

RESUMO

The myocardium is a diverse environment, requiring coordination between a variety of specialised cell types. Biochemical crosstalk between cardiomyocytes (CM) and microvascular endothelial cells (MVEC) is essential to maintain contractility and healthy tissue homeostasis. Yet, as myocytes beat, heterocellular communication occurs also through constantly fluctuating biomechanical stimuli, namely (1) compressive and tensile forces generated directly by the beating myocardium, and (2) pulsatile shear stress caused by intra-microvascular flow. Despite endothelial cells (EC) being highly mechanosensitive, the role of biomechanical stimuli from beating CM as a regulatory mode of myocardial-microvascular crosstalk is relatively unexplored. Given that cardiac biomechanics are dramatically altered during disease, and disruption of myocardial-microvascular communication is a known driver of pathological remodelling, understanding the biomechanical context necessary for healthy myocardial-microvascular interaction is of high importance. The current gap in understanding can largely be attributed to technical limitations associated with reproducing dynamic physiological biomechanics in multicellular in vitro platforms, coupled with limited in vitro viability of primary cardiac tissue. However, differentiation of CM from human pluripotent stem cells (hPSC) has provided an unlimited source of human myocytes suitable for designing in vitro models. This technology is now converging with the diverse field of tissue engineering, which utilises in vitro techniques designed to enhance physiological relevance, such as biomimetic extracellular matrix (ECM) as 3D scaffolds, microfluidic perfusion of vascularised networks, and complex multicellular architectures generated via 3D bioprinting. These strategies are now allowing researchers to design in vitro platforms which emulate the cell composition, architectures, and biomechanics specific to the myocardial-microvascular microenvironment. Inclusion of physiological multicellularity and biomechanics may also induce a more mature phenotype in stem cell-derived CM, further enhancing their value. This review aims to highlight the importance of biomechanical stimuli as determinants of CM-EC crosstalk in cardiac health and disease, and to explore emerging tissue engineering and hPSC technologies which can recapitulate physiological dynamics to enhance the value of in vitro cardiac experimentation.


Assuntos
Fenômenos Biomecânicos/fisiologia , Microvasos/fisiologia , Miocárdio/patologia , Miócitos Cardíacos/fisiologia , Células-Tronco Pluripotentes/fisiologia , Animais , Humanos , Engenharia Tecidual/métodos
5.
Circ Res ; 125(6): 628-642, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31310161

RESUMO

RATIONALE: Preclinical testing of cardiotoxicity and efficacy of novel heart failure therapies faces a major limitation: the lack of an in situ culture system that emulates the complexity of human heart tissue and maintains viability and functionality for a prolonged time. OBJECTIVE: To develop a reliable, easily reproducible, medium-throughput method to culture pig and human heart slices under physiological conditions for a prolonged period of time. METHODS AND RESULTS: Here, we describe a novel, medium-throughput biomimetic culture system that maintains viability and functionality of human and pig heart slices (300 µm thickness) for 6 days in culture. We optimized the medium and culture conditions with continuous electrical stimulation at 1.2 Hz and oxygenation of the medium. Functional viability of these slices over 6 days was confirmed by assessing their calcium homeostasis, twitch force generation, and response to ß-adrenergic stimulation. Temporal transcriptome analysis using RNAseq at day 2, 6, and 10 in culture confirmed overall maintenance of normal gene expression for up to 6 days, while over 500 transcripts were differentially regulated after 10 days. Electron microscopy demonstrated intact mitochondria and Z-disc ultra-structures after 6 days in culture under our optimized conditions. This biomimetic culture system was successful in keeping human heart slices completely viable and functionally and structurally intact for 6 days in culture. We also used this system to demonstrate the effects of a novel gene therapy approach in human heart slices. Furthermore, this culture system enabled the assessment of contraction and relaxation kinetics on isolated single myofibrils from heart slices after culture. CONCLUSIONS: We have developed and optimized a reliable medium-throughput culture system for pig and human heart slices as a platform for testing the efficacy of novel heart failure therapeutics and reliable testing of cardiotoxicity in a 3-dimensional heart model.


Assuntos
Biomimética/métodos , Ventrículos do Coração/ultraestrutura , Função Ventricular/fisiologia , Adulto , Animais , Feminino , Coração/fisiologia , Ventrículos do Coração/citologia , Humanos , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Miocárdio/citologia , Miocárdio/ultraestrutura , Técnicas de Cultura de Órgãos/métodos , Suínos , Transcriptoma/fisiologia
6.
J Mol Cell Cardiol ; 141: 11-16, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32201175

RESUMO

Determining transmural mechanical properties in the heart provides a foundation to understand physiological and pathophysiological cardiac mechanics. Although work on mechanical characterisation has begun in isolated cells and permeabilised samples, the mechanical profile of living individual cardiac layers has not been examined. Myocardial slices are 300 µm-thin sections of heart tissue with preserved cellular stoichiometry, extracellular matrix, and structural architecture. This allows for cardiac mechanics assays in the context of an intact in vitro organotypic preparation. In slices obtained from the subendocardium, midmyocardium and subepicardium of rats, a distinct pattern in transmural contractility is found that is different from that observed in other models. Slices from the epicardium and midmyocardium had a higher active tension and passive tension than the endocardium upon stretch. Differences in total myocyte area coverage, and aspect ratio between layers underlined the functional readouts, while no differences were found in total sarcomeric protein and phosphoprotein between layers. Such intrinsic heterogeneity may orchestrate the normal pumping of the heart in the presence of transmural strain and sarcomere length gradients in the in vivo heart.


Assuntos
Miocárdio/metabolismo , Animais , Fenômenos Biomecânicos , Proteínas de Transporte/metabolismo , Cadeias Leves de Miosina/metabolismo , Fosforilação , Ratos Sprague-Dawley , Sarcômeros/metabolismo , Troponina/metabolismo
7.
Int J Mol Sci ; 21(13)2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630753

RESUMO

Integrative bioinformatics is an emerging field in the big data era, offering a steadily increasing number of algorithms and analysis tools. However, for researchers in experimental life sciences it is often difficult to follow and properly apply the bioinformatical methods in order to unravel the complexity and systemic effects of omics data. Here, we present an integrative bioinformatics pipeline to decipher crucial biological insights from global transcriptome profiling data to validate innovative therapeutics. It is available as a web application for an interactive and simplified analysis without the need for programming skills or deep bioinformatics background. The approach was applied to an ex vivo cardiac model treated with natural anti-fibrotic compounds and we obtained new mechanistic insights into their anti-fibrotic action and molecular interplay with miRNAs in cardiac fibrosis. Several gene pathways associated with proliferation, extracellular matrix processes and wound healing were altered, and we could identify micro (mi) RNA-21-5p and miRNA-223-3p as key molecular components related to the anti-fibrotic treatment. Importantly, our pipeline is not restricted to a specific cell type or disease and can be broadly applied to better understand the unprecedented level of complexity in big data research.


Assuntos
Biologia Computacional/métodos , Fibrose/genética , Perfilação da Expressão Gênica/métodos , Fibrose/fisiopatologia , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética , RNA Mensageiro/genética , Transcriptoma/genética , Fluxo de Trabalho
9.
Cardiovasc Drugs Ther ; 33(2): 239-244, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30671746

RESUMO

Myocardial slices, also known as "cardiac tissue slices" or "organotypic heart slices," are ultrathin (100-400 µm) slices of living adult ventricular myocardium prepared using a high-precision vibratome. They are a model of intermediate complexity as they retain the native multicellularity, architecture, and physiology of the heart, while their thinness ensures adequate oxygen and metabolic substrate diffusion in vitro. Myocardial slices can be produced from a variety of animal models and human biopsies, thus providing a representative human in vitro platform for translational cardiovascular research. In this review, we compare myocardial slices to other in vitro models and highlight some of the unique advantages provided by this platform. Additionally, we discuss the work performed in our laboratory to optimize myocardial slice preparation methodology, which resulted in highly viable myocardial slices from both large and small mammalian hearts with only 2-3% cardiomyocyte damage and preserved structure and function. Applications of myocardial slices span both basic and translational cardiovascular science. Our laboratory has utilized myocardial slices for the investigation of cardiac multicellularity, visualizing 3D collagen distribution and micro/macrovascular networks using tissue clearing protocols and investigating the effects of novel conductive biomaterials on cardiac physiology. Myocardial slices have been widely used for pharmacological testing. Finally, the current challenges and future directions for the technology are discussed.


Assuntos
Técnicas In Vitro , Microtomia , Miocárdio , Miócitos Cardíacos , Pesquisa Translacional Biomédica/métodos , Animais , Comunicação Celular , Sobrevivência Celular , Humanos , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Sobrevivência de Tecidos
10.
Adv Funct Mater ; 28(21): 1800618, 2018 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-29875619

RESUMO

An auxetic conductive cardiac patch (AuxCP) for the treatment of myocardial infarction (MI) is introduced. The auxetic design gives the patch a negative Poisson's ratio, providing it with the ability to conform to the demanding mechanics of the heart. The conductivity allows the patch to interface with electroresponsive tissues such as the heart. Excimer laser microablation is used to micropattern a re-entrant honeycomb (bow-tie) design into a chitosan-polyaniline composite. It is shown that the bow-tie design can produce patches with a wide range in mechanical strength and anisotropy, which can be tuned to match native heart tissue. Further, the auxetic patches are conductive and cytocompatible with murine neonatal cardiomyocytes in vitro. Ex vivo studies demonstrate that the auxetic patches have no detrimental effect on the electrophysiology of both healthy and MI rat hearts and conform better to native heart movements than unpatterned patches of the same material. Finally, the AuxCP applied in a rat MI model results in no detrimental effect on cardiac function and negligible fibrotic response after two weeks in vivo. This approach represents a versatile and robust platform for cardiac biomaterial design and could therefore lead to a promising treatment for MI.

11.
Stem Cells ; 35(8): 1881-1897, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28577296

RESUMO

Human pluripotent stem cell-derived cardiomyocytes (PSC-CMs) have great potential application in almost all areas of cardiovascular research. A current major goal of the field is to build on the past success of differentiation strategies to produce CMs with the properties of those originating from the different chambers of the adult human heart. With no anatomical origin or developmental pathway to draw on, the question of how to judge the success of such approaches and assess the chamber specificity of PSC-CMs has become increasingly important; commonly used methods have substantial limitations and are based on limited evidence to form such an assessment. In this article, we discuss the need for chamber-specific PSC-CMs in a number of areas as well as current approaches used to assess these cells on their likeness to those from different chambers of the heart. Furthermore, describing in detail the structural and functional features that distinguish the different chamber-specific human adult cardiac myocytes, we propose an evidence-based tool to aid investigators in the phenotypic characterization of differentiated PSC-CMs. Stem Cells 2017;35:1881-1897.


Assuntos
Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/citologia , Animais , Biomarcadores/metabolismo , Cálcio/metabolismo , Humanos , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/metabolismo , Células de Purkinje/citologia , Células de Purkinje/metabolismo
12.
Int J Mol Sci ; 19(11)2018 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-30373227

RESUMO

Cardiac disease causes 33% of deaths worldwide but our knowledge of disease progression is still very limited. In vitro models utilising and combining multiple, differentiated cell types have been used to recapitulate the range of myocardial microenvironments in an effort to delineate the mechanical, humoral, and electrical interactions that modulate the cardiac contractile function in health and the pathogenesis of human disease. However, due to limitations in isolating these cell types and changes in their structure and function in vitro, the field is now focused on the development and use of stem cell-derived cell types, most notably, human-induced pluripotent stem cell-derived CMs (hiPSC-CMs), in modelling the CM function in health and patient-specific diseases, allowing us to build on the findings from studies using animal and adult human CMs. It is becoming increasingly appreciated that communications between cardiomyocytes (CMs), the contractile cell of the heart, and the non-myocyte components of the heart not only regulate cardiac development and maintenance of health and adult CM functions, including the contractile state, but they also regulate remodelling in diseases, which may cause the chronic impairment of the contractile function of the myocardium, ultimately leading to heart failure. Within the myocardium, each CM is surrounded by an intricate network of cell types including endothelial cells, fibroblasts, vascular smooth muscle cells, sympathetic neurons, and resident macrophages, and the extracellular matrix (ECM), forming complex interactions, and models utilizing hiPSC-derived cell types offer a great opportunity to investigate these interactions further. In this review, we outline the historical and current state of disease modelling, focusing on the major milestones in the development of stem cell-derived cell types, and how this technology has contributed to our knowledge about the interactions between CMs and key non-myocyte components of the heart in health and disease, in particular, heart failure. Understanding where we stand in the field will be critical for stem cell-based applications, including the modelling of diseases that have complex multicellular dysfunctions.


Assuntos
Cardiopatias/fisiopatologia , Modelos Cardiovasculares , Modelagem Computacional Específica para o Paciente , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/fisiologia
13.
EMBO Rep ; 15(4): 438-45, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24610369

RESUMO

Toll-like receptor 9 (TLR9) has a key role in the recognition of pathogen DNA in the context of infection and cellular DNA that is released from damaged cells. Pro-inflammatory TLR9 signalling pathways in immune cells have been well investigated, but we have recently discovered an alternative pathway in which TLR9 temporarily reduces energy substrates to induce cellular protection from stress in cardiomyocytes and neurons. However, the mechanism by which TLR9 stimulation reduces energy substrates remained unknown. Here, we identify the calcium-transporting ATPase, SERCA2 (also known as Atp2a2), as a key molecule for the alternative TLR9 signalling pathway. TLR9 stimulation reduces SERCA2 activity, modulating Ca(2+) handling between the SR/ER and mitochondria, which leads to a decrease in mitochondrial ATP levels and the activation of cellular protective machinery. These findings reveal how distinct innate responses can be elicited in immune and non-immune cells--including cardiomyocytes--using the same ligand-receptor system.


Assuntos
Trifosfato de Adenosina/biossíntese , Fibroblastos/fisiologia , Miócitos Cardíacos/fisiologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Receptor Toll-Like 9/fisiologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Células Cultivadas , Retículo Endoplasmático/metabolismo , Camundongos , Mitocôndrias/metabolismo , Ligação Proteica , Estresse Fisiológico
14.
Biophys J ; 108(1): 1-4, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25564842

RESUMO

Previous studies investigating human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have proposed the distinction of heart chamber-specific (atrial, ventricular, pacemaker) electrophysiological phenotypes based on action potential (AP) morphology. This suggestion has been based on data acquired using techniques that allow measurements from only a small number of cells and at low seeding densities. It has also been observed that density of culture affects the properties of iPSC-CMs. Here we systematically analyze AP morphology from iPSC-CMs at two seeding densities: 60,000 cells/well (confluent monolayer) and 15,000 cells/well (sparsely-seeded) using a noninvasive optical method. The confluent cells (n = 360) demonstrate a series of AP morphologies on a normally distributed spectrum with no evidence for specific subpopulations. The AP morphologies of sparsely seeded cells (n = 32) displayed a significantly different distribution, but even in this case there is no clear evidence of chamber-specificity. Reduction in gap junction conductance using carbenoxolone only minimally affected APD distribution in confluent cells. These data suggest that iPSC-CMs possess a sui generis AP morphology, and when observed in different seeding densities may encompass any shape including those resembling chamber-specific subtypes. These results may be explained by different functional maturation due to culture conditions.


Assuntos
Potenciais de Ação/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/fisiologia , Potenciais de Ação/efeitos dos fármacos , Carbenoxolona/farmacologia , Fármacos Cardiovasculares/farmacologia , Contagem de Células , Técnicas de Cultura de Células , Células Cultivadas , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Modelos Lineares , Miócitos Cardíacos/efeitos dos fármacos , Imagem Óptica
15.
J Biol Chem ; 289(3): 1282-93, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24280220

RESUMO

Telethonin (also known as titin-cap or t-cap) is a muscle-specific protein whose mutation is associated with cardiac and skeletal myopathies through unknown mechanisms. Our previous work identified cardiac telethonin as an interaction partner for the protein kinase D catalytic domain. In this study, kinase assays used in conjunction with MS and site-directed mutagenesis confirmed telethonin as a substrate for protein kinase D and Ca(2+)/calmodulin-dependent kinase II in vitro and identified Ser-157 and Ser-161 as the phosphorylation sites. Phosphate affinity electrophoresis and MS revealed endogenous telethonin to exist in a constitutively bis-phosphorylated form in isolated adult rat ventricular myocytes and in mouse and rat ventricular myocardium. Following heterologous expression in myocytes by adenoviral gene transfer, wild-type telethonin became bis-phosphorylated, whereas S157A/S161A telethonin remained non-phosphorylated. Nevertheless, both proteins localized predominantly to the sarcomeric Z-disc, where they partially replaced endogenous telethonin. Such partial replacement with S157A/S161A telethonin disrupted transverse tubule organization and prolonged the time to peak of the intracellular Ca(2+) transient and increased its variance. These data reveal, for the first time, that cardiac telethonin is constitutively bis-phosphorylated and suggest that such phosphorylation is critical for normal telethonin function, which may include maintenance of transverse tubule organization and intracellular Ca(2+) transients.


Assuntos
Conectina/metabolismo , Proteínas Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Substituição de Aminoácidos , Animais , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Conectina/genética , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Humanos , Masculino , Camundongos , Microtúbulos/genética , Microtúbulos/metabolismo , Proteínas Musculares/genética , Mutação de Sentido Incorreto , Miócitos Cardíacos/citologia , Fosforilação/fisiologia , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Ratos , Ratos Wistar , Sarcômeros/genética , Sarcômeros/metabolismo
16.
Hum Mol Genet ; 22(2): 372-83, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23100327

RESUMO

The transverse (t)-tubule system plays an essential role in healthy and diseased heart muscle, particularly in Ca(2+)-induced Ca(2+) release (CICR), and its structural disruption is an early event in heart failure. Both mechanical overload and unloading alter t-tubule structure, but the mechanisms mediating the normally tight regulation of the t-tubules in response to load variation are poorly understood. Telethonin (Tcap) is a stretch-sensitive Z-disc protein that binds to proteins in the t-tubule membrane. To assess its role in regulating t-tubule structure and function, we used Tcap knockout (KO) mice and investigated cardiomyocyte t-tubule and cell structure and CICR over time and following mechanical overload. In cardiomyocytes from 3-month-old KO (3mKO), there were isolated t-tubule defects and Ca(2+) transient dysynchrony without whole heart and cellular dysfunction. Ca(2+) spark frequency more than doubled in 3mKO. At 8 months of age (8mKO), cardiomyocytes showed progressive loss of t-tubules and remodelling of the cell surface, with prolonged and dysynchronous Ca(2+) transients. Ca(2+) spark frequency was elevated and the L-type Ca(2+) channel was depressed at 8 months only. After mechanical overload obtained by aortic banding constriction, the Ca(2+) transient was prolonged in both wild type and KO. Mechanical overload increased the Ca(2+) spark frequency in KO alone, where there was also significantly more t-tubule loss, with a greater deterioration in t-tubule regularity. In conjunction, Tcap KO showed severe loss of cell surface ultrastructure. These data suggest that Tcap is a critical, load-sensitive regulator of t-tubule structure and function.


Assuntos
Coração/fisiologia , Proteínas Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Sarcolema/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Conectina , Coração/fisiopatologia , Camundongos , Camundongos Knockout , Proteínas Musculares/genética , Sarcolema/patologia
17.
Sensors (Basel) ; 14(7): 11629-39, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24988379

RESUMO

Emerging materials in the field of implantable sensors should meet the needs for biocompatibility; transparency; flexibility and integrability. In this work; we present an integrated approach for implementing flexible bio-sensors based on thin Parylene C films that serve both as flexible support substrates and as active H(+) sensing membranes within the same platform. Using standard micro-fabrication techniques; a miniaturized 40-electrode array was implemented on a 5 µm-thick Parylene C film. A thin capping film (1 µm) of Parylene on top of the array was plasma oxidized and served as the pH sensing membrane. The sensor was evaluated with the use of extended gate discrete MOSFETs to separate the chemistry from the electronics and prolong the lifetime of the sensor. The chemical sensing array spatially maps the local pH levels; providing a reliable and rapid-response (<5 s) system with a sensitivity of 23 mV/pH. Moreover; it preserves excellent encapsulation integrity and low chemical drifts (0.26-0.38 mV/min). The proposed approach is able to deliver hybrid flexible sensing platforms that will facilitate concurrent electrical and chemical recordings; with application in real-time physiological recordings of organs and tissues.


Assuntos
Eletrodos Implantados , Concentração de Íons de Hidrogênio , Eletrodos Seletivos de Íons , Análise em Microsséries/instrumentação , Polímeros/química , Transistores Eletrônicos , Xilenos/química , Módulo de Elasticidade , Desenho de Equipamento , Análise de Falha de Equipamento
18.
Mol Ther Nucleic Acids ; 35(3): 102233, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38974998

RESUMO

The delivery of therapeutic long non-coding RNAs (lncRNA) to the heart by extracellular vesicles (EVs) is promising for heart repair. H19, a lncRNA acting as a major regulator of gene expression within the cardiovascular system, is alternatively spliced, but the loading of its different splice variants into EVs and their subsequent uptake by recipient cardiac cells remain elusive. Here, we dissected the cellular expression of H19 splice variants and their loading into EVs secreted by Wharton-Jelly mesenchymal stromal/stem cells (WJ-MSCs). We demonstrated that overexpression of the mouse H19 gene in WJ-MSCs induces the expression of H19 splice variants at different levels. Interestingly, EVs isolated from the H19-transfected WJ-MSCs (EV-H19) showed similar expression levels for all tested splice variant sets. In vitro, we further demonstrated that EV-H19 was taken up by cardiomyocytes, fibroblasts, and endothelial cells (ECs). Finally, analysis of EV tropism in living rat myocardial slices indicated that EVs were internalized mostly by cardiomyocytes and ECs. Collectively, our results indicated that EVs can be loaded with different lncRNA splice variants and successfully internalized by cardiac cells.

19.
J Surg Res ; 179(1): e31-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22520576

RESUMO

INTRODUCTION: Chronic changes in mechanical load regulate long-term cardiac function. Chronic overload of the ventricle results in myocardial failure. Clinical use of ventricular assist devices shows that chronic reduction in load has a number of different consequences on the myocardium, including beneficial reverse remodeling as well as undesired remodeling (e.g., myocardial atrophy and fibrosis, both of which could have negative functional implications). The complex response to mechanical unloading necessitates reproducible animal models of mechanical unloading for use in the laboratory. This article aims to describe the operative technique of two animal models of mechanical unloading in detail, to enable the reproducible use of these animal models. METHODS: In 1964, Abbott et al first described the heterotopic abdominal heart transplantation technique as a means to study the biology of transplanted cardiac grafts. This involves an aorto-aortic anastomosis and a pulmonary artery to inferior vena cava anastomosis. In this model, the left ventricle is virtually completely volume unloaded, receiving only thebesian venous return, and substantially but not entirely pressure unloaded. In this report we describe two refined techniques for mechanical unloading of healthy or failing hearts based on experience with over 500 operations. RESULTS: We describe an operative technique, including cardioprotective strategies, that provides a model of mechanical unloading with no immunological rejection and allows measurements of parameters of myocardial structure and function for many months. We describe a refined technique that achieves a lesser degree of left ventricular volume unloading, involving transplantation of both heart and lungs via a single aorto-aortic anastomosis. CONCLUSIONS: This article is the first to describe these two techniques in sufficient detail to enable novices to attempt and understand these operations and the differences between them. The technique we describe provides an effective and reproducible model of complete and partial mechanical unloading.


Assuntos
Modelos Animais de Doenças , Insuficiência Cardíaca/fisiopatologia , Transplante de Coração/métodos , Transplante Heterotópico/métodos , Disfunção Ventricular/fisiopatologia , Animais , Ecocardiografia , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/fisiopatologia , Coração Auxiliar , Masculino , Ratos , Ratos Endogâmicos Lew , Remodelação Ventricular
20.
J Cell Mol Med ; 16(12): 2910-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22862818

RESUMO

Cardiac transverse (t)-tubules are altered during disease and may be regulated by stretch-sensitive molecules. The relationship between variations in the degree and duration of load and t-tubule structure remains unknown, as well as its implications for local Ca(2+)-induced Ca(2+) release (CICR). Rat hearts were studied after 4 or 8 weeks of moderate mechanical unloading [using heterotopic abdominal heart-lung transplantation (HAHLT)] and 6 or 10 weeks of pressure overloading using thoracic aortic constriction. CICR, cell and t-tubule structure were assessed using confocal-microscopy, patch-clamping and scanning ion conductance microscopy. Moderate unloading was compared with severe unloading [using heart-only transplantation (HAHT)]. Mechanical unloading reduced cardiomyocyte volume in a time-dependent manner. Ca(2+) release synchronicity was reduced at 8 weeks moderate unloading only. Ca(2+) sparks increased in frequency and duration at 8 weeks of moderate unloading, which also induced t-tubule disorganization. Overloading increased cardiomyocyte volume and disrupted t-tubule morphology at 10 weeks but not 6 weeks. Moderate mechanical unloading for 4 weeks had milder effects compared with severe mechanical unloading (37% reduction in cell volume at 4 weeks compared to 56% reduction after severe mechanical unloading) and did not cause depression and delay of the Ca(2+) transient, increased Ca(2+) spark frequency or impaired t-tubule and cell surface structure. These data suggest that variations in chronic mechanical load influence local CICR and t-tubule structure in a time- and degree-dependent manner, and that physiological states of increased and reduced cell size, without pathological changes are possible.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Estresse Fisiológico , Animais , Aorta/cirurgia , Coração , Insuficiência Cardíaca/patologia , Transplante de Coração , Masculino , Miócitos Cardíacos/citologia , Miócitos Cardíacos/ultraestrutura , Ratos , Ratos Endogâmicos Lew , Retículo Sarcoplasmático/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA