Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Hosp Pharm ; 52(8): 546-550, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29276287

RESUMO

Background: Several recent studies have shown that both lower doses and shorter durations of systemic corticosteroids have similar efficacy for treatment of acute exacerbation of chronic obstructive pulmonary disease (AECOPD). However, each trial has limitations that constrain direct applicability to a US hospital population. Objective: The aim of this study was to determine whether, in a US community hospital, low doses of corticosteroids provide the lowest risk of adverse effects without increasing length of stay or readmission rate. Methods: A single-center retrospective cohort was performed using patients meeting criteria for AECOPD. Primary endpoints included length of hospitalization, proportion of patients with >30% increase in blood glucose from baseline, and rate of 30-day readmission; multivariable regression analysis was used for comparison. The 3 inpatient cumulative dose range groups were low: ≤250-mg prednisone equivalents, medium: 251 to 500 mg, and high: ≥501 mg. Results: A total of 665 records were evaluated, with 369 records included. As the corticosteroid dose ranges increased, there were more patients with increased blood glucose (33.3%, 54.4%, 59.9%). When holding all other factors constant, there was a statistically significant increase in patients with elevated blood glucose with the medium- and high-dose groups as compared with the low-dose group (P < .009, P < .001), the average length of stay was 21.3 hours higher in the high-dose group as compared with the low-dose group (P < .001), and there were no significant differences in readmission rates between the dose groups. Conclusions: The lowest dose range of corticosteroids was associated with the lowest rate of impaired blood glucose without a statistically significant increase in length of stay or readmission rate.

2.
Cancer Immunol Immunother ; 65(8): 885-96, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27222052

RESUMO

The primary immune role of B cells is to produce antibodies, but they can also influence T cell function via antigen presentation and, in some contexts, immune regulation. Whether their roles in tumour immunity are similar to those in other chronic immune responses such as autoimmunity and chronic infection, where both pro- and anti-inflammatory roles have been described, remains controversial. Many studies have aimed to define the role of B cells in antitumor immune responses, but despite this considerable body of work, it is not yet possible to predict how they will affect immunity to any given tumour. In many human cancers, the presence of tumour-infiltrating B cells and tumour-reactive antibodies correlates with extended patient survival, and this clinical observation is supported by data from some animal models. On the other hand, T cell responses can be adversely affected by B cell production of immunoregulatory cytokines, a phenomenon that has been demonstrated in humans and in animal models. The isotype and concentration of tumour-reactive antibodies may also influence tumour progression. Recruitment of B cells into tumours may directly reflect the subtype and strength of the anti-tumour T cell response. As the response becomes chronic, B cells may attenuate T cell responses in an attempt to decrease host damage, similar to their described role in chronic infection and autoimmunity. Understanding how B cell responses in cancer are related to the effectiveness of the overall anti-tumour response is likely to aid in the development of new therapeutic interventions against cancer.


Assuntos
Anticorpos/imunologia , Linfócitos B/imunologia , Neoplasias/imunologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos
3.
Immunol Cell Biol ; 94(6): 593-603, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26837456

RESUMO

The importance of CD4 T cells in tumour immunity has been increasingly recognised, with recent reports describing robust CD4 T cell-dependent tumour control in mice whose immune-regulatory mechanisms have been disturbed by irradiation, chemotherapy, immunomodulatory therapy and/or constitutive immunodeficiency. Tumour control in such models has been attributed in large part to direct Major Histocompatibility Complex (MHC) class II-dependent CD4 T cell killing of tumour cells. To test whether CD4 T cells can eradicate tumours without directly killing tumour cells, we developed an animal model in which tumour-derived antigen could be presented to T-cell receptor (TCR)-transgenic CD4 T cells by host but not tumour MHC class II molecules. In I-E(+) mice bearing I-E(null) tumours, naive I-E-restricted CD4 T cells proliferated locally in tumour-draining lymph nodes after recognising tumour-derived antigen on migratory dendritic cells. In lymphopaenic but not immunosufficient hosts, CD4 T cells differentiated into polarised T helper type 1 (Th1) cells expressing interferon gamma (IFNγ), tumor necrosis factor alpha (TNFα) and interleukin (IL)-2 but little IL-17, and cleared established tumours. Tumour clearance was enhanced by higher TCR affinity for tumour antigen-MHC class II and was critically dependent on IFNγ, as demonstrated by early tumour escape in animals treated with an IFNγ blocking antibody. Thus, CD4 T cells and IFNγ can control tumour growth without direct T-cell killing of tumour cells, and without requiring additional adaptive immune cells such as CD8 T cells and B cells. Our results support a role for effective CD4 T cell-dependent tumour immunity against MHC class II-negative tumours.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD4-Positivos/imunologia , Melanoma/imunologia , Neoplasias Cutâneas/imunologia , Animais , Movimento Celular , Proliferação de Células , Células Dendríticas/imunologia , Modelos Animais de Doenças , Interferon gama/metabolismo , Linfonodos/patologia , Melanoma/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID , Neoplasias Cutâneas/patologia
4.
Oncoimmunology ; 13(1): 2290799, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38125720

RESUMO

There has been growing interest in the role of B cells in antitumour immunity and potential use in adoptive cellular therapies. To date, the success of such therapies is limited. The intrinsic capacity of B cells to specifically activate tumour-specific CD4+ T cells in vivo via TCR-dependent interactions remains poorly defined. We have developed an in vivo tumour model that utilizes MHCII I-E restriction which limits antigen presentation to tumour-specific CD4 T cells to either tumour-specific B cells or host myeloid antigen presenting cells (APCs) in lymphopenic RAG-/-mice. We have previously shown that these naive tumour-specific CD4+ T cells can successfully eradicate established tumours in this model when activated by host APCs. When naïve tumour-specific B cells are the only source of I-E+ APC, very limited proliferation of naïve CD4+ T cells is observed, whereas host I-E+ APCs are potent T cell activators. B cells pre-activated with an anti-CD40 agonistic antibody in vivo support increased T cell proliferation, although far less than host APCs. CD4+ T cells that have already differentiated to an effector/central memory phenotype proliferate more readily in response to naïve B cells, although still 100-fold less than in response to host APCs. This study demonstrates that even in a significantly lymphopenic environment, myeloid APCs are the dominant primary activators of tumour-specific T cells, in contrast to the very limited capacity of tumour-specific B cells. This suggests that future anti-tumour therapies that incorporate activated B cells should also include mechanisms that activate host APCs.


Assuntos
Células Apresentadoras de Antígenos , Neoplasias , Camundongos , Animais , Células Apresentadoras de Antígenos/fisiologia , Linfócitos T CD4-Positivos , Ativação Linfocitária , Linfócitos B
5.
Cell Rep ; 43(1): 113598, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38150364

RESUMO

Functional interactions between cytotoxic T cells and tumor cells are central to anti-cancer immunity. However, our understanding of the proteins involved is limited. Here, we present HySic (hybrid quantification of stable isotope labeling by amino acids in cell culture [SILAC]-labeled interacting cells) as a method to quantify protein and phosphorylation dynamics between and within physically interacting cells. Using co-cultured T cells and tumor cells, we directly measure the proteome and phosphoproteome of engaged cells without the need for physical separation. We identify proteins whose abundance or activation status changes upon T cell:tumor cell interaction and validate our method with established signal transduction pathways including interferon γ (IFNγ) and tumor necrosis factor (TNF). Furthermore, we identify the RHO/RAC/PAK1 signaling pathway to be activated upon cell engagement and show that pharmacologic inhibition of PAK1 sensitizes tumor cells to T cell killing. Thus, HySic is a simple method to study rapid protein signaling dynamics in physically interacting cells that is easily extended to other biological systems.


Assuntos
Neoplasias , Fosfoproteínas , Humanos , Fosfoproteínas/metabolismo , Transdução de Sinais , Comunicação Celular , Fosforilação , Marcação por Isótopo/métodos , Proteoma/metabolismo
6.
Cell Rep Med ; 4(2): 100941, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36812891

RESUMO

By restoring tryptophan, indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors aim to reactivate anti-tumor T cells. However, a phase III trial assessing their clinical benefit failed, prompting us to revisit the role of IDO1 in tumor cells under T cell attack. We show here that IDO1 inhibition leads to an adverse protection of melanoma cells to T cell-derived interferon-gamma (IFNγ). RNA sequencing and ribosome profiling shows that IFNγ shuts down general protein translation, which is reversed by IDO1 inhibition. Impaired translation is accompanied by an amino acid deprivation-dependent stress response driving activating transcription factor-4 (ATF4)high/microphtalmia-associated transcription factor (MITF)low transcriptomic signatures, also in patient melanomas. Single-cell sequencing analysis reveals that MITF downregulation upon immune checkpoint blockade treatment predicts improved patient outcome. Conversely, MITF restoration in cultured melanoma cells causes T cell resistance. These results highlight the critical role of tryptophan and MITF in the melanoma response to T cell-derived IFNγ and uncover an unexpected negative consequence of IDO1 inhibition.


Assuntos
Melanoma , Triptofano , Humanos , Melanoma/patologia , Interferon gama/metabolismo , Linfócitos T/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética
7.
Oncoimmunology ; 11(1): 2139074, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465485

RESUMO

Immunotherapies, in particular immune checkpoint blockade (ICB), have improved the clinical outcome of cancer patients, although many fail to mount a durable response. Several resistance mechanisms have been identified, but our understanding of the requirements for a robust ICB response is incomplete. We have engineered an MHC I/antigen: TCR-matched panel of human NSCLC cancer and T cells to identify tumor cell-intrinsic T cell resistance mechanisms. The top differentially expressed gene in resistant tumor cells was SERPINB9. This serine protease inhibitor of the effector T cell-derived molecule granzyme B prevents caspase-mediated tumor apoptosis. Concordantly, we show that genetic ablation of SERPINB9 reverts T cell resistance of NSCLC cell lines, whereas its overexpression reduces T cell sensitivity. SERPINB9 expression in NSCLC strongly correlates with a mesenchymal phenotype. We also find that SERPINB9 is commonly amplified in cancer, particularly melanoma in which it is indicative of poor prognosis. Single-cell RNA sequencing of ICB-treated melanomas revealed that SERPINB9 expression is elevated not only in cells from post- versus pre-treatment cancers, but also in ICB-refractory cancers. In NSCLC we commonly observed rare SERPINB9-positive cancer cells, possibly accounting for reservoirs of ICB-resistant cells. While underscoring SERPINB9 as a potential target to combat immunotherapy resistance, these results suggest its potential to serve as a prognostic and predictive biomarker.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Inibidores de Checkpoint Imunológico , Neoplasias , Serpinas , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Melanoma/tratamento farmacológico , Melanoma/genética , Inibidores de Serina Proteinase/genética , Serpinas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Cutâneas , Neoplasias/genética
8.
Oncotarget ; 7(21): 30211-29, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27121060

RESUMO

The role of B cells and antibodies in anti-tumor immunity is controversial, with both positive and negative effects reported in animal models and clinical studies. We developed a murine B16.F10 melanoma model to study the effects of collaboration between tumor-specific CD4+ T cells and B cells on tumor control. By incorporating T cell receptor transgenic T cells and B cell receptor isotype switching B cells, we were able to track the responses of tumor-reactive T and B cells and the development of anti-tumor antibodies in vivo. In the presence of tumor-specific B cells, the number of tumor-reactive CD4+ T cells was reduced in lymphoid tissues and the tumor itself, and this correlated with poor tumor control. B cells had little effect on the Th1 bias of the CD4+ T cell response, and the number of induced FoxP3+ regulatory cells (iTregs) generated from within the original naive CD4+ T cell inoculum was unrelated to the degree of B cell expansion. In response to CD4+ T cell help, B cells produced a range of isotype-switched anti-tumor antibodies, principally IgG1, IgG2a/c and IgG2b. In the absence of CD4+ T cells, B cells responded to agonistic anti-CD40 administration by switching to production of IgG2a/c and, to a lesser extent, IgG1, IgG3, IgA and IgE, which reduced the number of lung metastases after i.v. tumor inoculation but had no effect on the growth of subcutaneous tumors.


Assuntos
Formação de Anticorpos/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Melanoma Experimental/imunologia , Animais , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Citocinas/imunologia , Citocinas/metabolismo , Switching de Imunoglobulina/genética , Switching de Imunoglobulina/imunologia , Estimativa de Kaplan-Meier , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Carga Tumoral/genética , Carga Tumoral/imunologia
9.
J Clin Invest ; 125(9): 3627-41, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26301814

RESUMO

Regulatory T cells (Tregs) have been shown to enhance immune reconstitution and prevent graft-versus-host disease (GVHD) after hematopoietic stem cell transplantation; however, it is unclear how Tregs mediate these effects. Here, we developed a model to examine the mechanism of Treg-dependent regulation of immune reconstitution. Lymphopenic mice were selectively reconstituted with Tregs prior to transfer of conventional CD4+ T cells. Full Treg reconstitution prevented the rapid oligoclonal proliferation that gives rise to pathogenic CD4 effector T cells, while preserving the slow homeostatic form of lymphopenia-induced peripheral expansion that repopulates a diverse peripheral T cell pool. Treg-mediated CTLA-4-dependent downregulation of CD80/CD86 on DCs was critical for inhibition of rapid proliferation and was a function of the Treg/DC ratio achieved by reconstitution. In an allogeneic BM transplant model, selective Treg reconstitution before T cell transfer also normalized DC costimulation and provided complete protection against GVHD. In contrast, cotransfer of Tregs was not protective. Our results indicate that achieving optimal recovery from lymphopenia should aim to improve early Treg reconstitution in order to increase the relative number of Tregs to DCs and thereby inhibit spontaneous oligoclonal T cell proliferation.


Assuntos
Transferência Adotiva , Transplante de Medula Óssea , Células Dendríticas , Doença Enxerto-Hospedeiro , Linfopenia , Linfócitos T Reguladores , Aloenxertos , Animais , Antígeno B7-1/imunologia , Antígeno B7-2/imunologia , Antígeno CTLA-4/imunologia , Proliferação de Células , Células Dendríticas/imunologia , Células Dendríticas/patologia , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/patologia , Doença Enxerto-Hospedeiro/prevenção & controle , Linfopenia/imunologia , Linfopenia/patologia , Linfopenia/prevenção & controle , Camundongos , Camundongos Knockout , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Linfócitos T Reguladores/transplante
10.
Protein Sci ; 20(9): 1619-31, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21766385

RESUMO

There is growing interest in the development of protein switches, which are proteins whose function, such as binding a target molecule, can be modulated through environmental triggers. Efforts to engineer highly pH sensitive protein-protein interactions typically rely on the rational introduction of ionizable groups in the protein interface. Such experiments are typically time intensive and often sacrifice the protein's affinity at the permissive pH. The underlying thermodynamics of proton-linkage dictate that the presence of multiple ionizable groups, which undergo a pK(a) change on protein binding, are necessary to result in highly pH-dependent binding. To test this hypothesis, a novel combinatorial histidine library was developed where every possible combination of histidine and wild-type residue is sampled throughout the interface of a model anti-RNase A single domain VHH antibody. Antibodies were coselected for high-affinity binding and pH-sensitivity using an in vitro, dual-function selection strategy. The resulting antibodies retained near wild-type affinity yet became highly sensitive to small decreases in pH, drastically decreasing their binding affinity, due to the incorporation of multiple histidine groups. Several trends were observed, such as histidine "hot-spots," which will help enhance the development of pH switch proteins as well as increase our understanding of the role of ionizable residues in protein interfaces. Overall, the combinatorial approach is rapid, general, and robust and should be capable of producing highly pH-sensitive protein affinity reagents for a number of different applications.


Assuntos
Histidina/química , Engenharia de Proteínas/métodos , Proteínas/química , Proteínas/metabolismo , Ligação Proteica , Conformação Proteica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA