Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Syst Biol ; 69(3): 413-430, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504987

RESUMO

How species diversification occurs remains an unanswered question in predatory marine invertebrates, such as sea snails of the family Terebridae. However, the anatomical disparity found throughput the Terebridae provides a unique perspective for investigating diversification patterns in venomous predators. In this study, a new dated molecular phylogeny of the Terebridae is used as a framework for investigating diversification of the family through time, and for testing the putative role of intrinsic and extrinsic traits, such as shell size, larval ecology, bathymetric distribution, and anatomical features of the venom apparatus, as drivers of terebrid species diversification. Macroevolutionary analysis revealed that when diversification rates do not vary across Terebridae clades, the whole family has been increasing its global diversification rate since 25 Ma. We recovered evidence for a concurrent increase in diversification of depth ranges, while shell size appeared to have undergone a fast divergence early in terebrid evolutionary history. Our data also confirm that planktotrophy is the ancestral larval ecology in terebrids, and evolutionary modeling highlighted that shell size is linked to larval ecology of the Terebridae, with species with long-living pelagic larvae tending to be larger and have a broader size range than lecithotrophic species. Although we recovered patterns of size and depth trait diversification through time and across clades, the presence or absence of a venom gland (VG) did not appear to have impacted Terebridae diversification. Terebrids have lost their venom apparatus several times and we confirm that the loss of a VG happened in phylogenetically clustered terminal taxa and that reversal is extremely unlikely. Our findings suggest that environmental factors, and not venom, have had more influence on terebrid evolution.


Assuntos
Organismos Aquáticos/classificação , Biodiversidade , Evolução Biológica , Meio Ambiente , Filogenia , Caramujos/classificação , Animais
2.
Mol Biol Evol ; 26(1): 15-25, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18840603

RESUMO

Toxoglossate marine gastropods, traditionally assigned to the families Conidae, Terebridae, and Turridae, are one of the most populous animal groups that use venom to capture their prey. These marine animals are generally characterized by a venom apparatus that consists of a muscular venom bulb and a tubular venom gland. The toxoglossan radula, often compared with a hypodermic needle for its use as a conduit to inject toxins into prey, is considered a major anatomical breakthrough that assisted in the successful initial radiation of these animals in the Cretaceous and early Tertiary. The pharmacological success of toxins from cone snails has made this group a star among biochemists and neuroscientists, but very little is known about toxins from the other Toxoglossa, and the phylogeny of these families is largely in doubt. Here we report the first molecular phylogeny for the Terebridae and use the results to infer the evolution of the venom apparatus for this group. Our findings indicate that most of the genera of terebrids are polyphyletic, and one species ("Terebra" (s.l.) jungi) is the sister group to all other terebrids. Molecular analyses combined with mapping of venom apparatus morphology indicate that the Terebridae have lost the venom apparatus at least twice during their evolution. Species in the genera Terebra and Hastula have the typical venom apparatus found in most toxoglossate gastropods, but all other terebrid species do not. For venomous organisms, the dual analysis of molecular phylogeny and toxin function is an instructive combination for unraveling the larger questions of phylogeny and speciation. The results presented here suggest a paradigm shift in the current understanding of terebrid evolution, while presenting a road map for discovering novel terebrid toxins, a largely unexplored resource for biomedical research and potential therapeutic drug development.


Assuntos
Evolução Biológica , Gastrópodes/classificação , Gastrópodes/genética , Animais , Gastrópodes/anatomia & histologia , Filogenia , Peçonhas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA