Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Hum Mol Genet ; 32(1): 161-171, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36018815

RESUMO

Tuberculosis is a significant public health concern resulting in the death of over 1 million individuals each year worldwide. While treatment options and vaccines exist, a substantial number of infections still remain untreated or are caused by treatment resistant strains. Therefore, it is important to identify mechanisms that contribute to risk and prognosis of tuberculosis as this may provide tools to understand disease mechanisms and provide novel treatment options for those with severe infection. Our goal was to identify genetic risk factors that contribute to the risk of tuberculosis and to understand biological mechanisms and causality behind the risk of tuberculosis. A total of 1895 individuals in the FinnGen study had International Classification of Diseases-based tuberculosis diagnosis. Genome-wide association study analysis identified genetic variants with statistically significant association with tuberculosis at the human leukocyte antigen (HLA) region (P < 5e-8). Fine mapping of the HLA association provided evidence for one protective haplotype tagged by HLA DQB1*05:01 (P = 1.82E-06, OR = 0.81 [CI 95% 0.74-0.88]), and predisposing alleles tagged by HLA DRB1*13:02 (P = 0.00011, OR = 1.35 [CI 95% 1.16-1.57]). Furthermore, genetic correlation analysis showed association with earlier reported risk factors including smoking (P < 0.05). Mendelian randomization supported smoking as a risk factor for tuberculosis (inverse-variance weighted P < 0.05, OR = 1.83 [CI 95% 1.15-2.93]) with no significant evidence of pleiotropy. Our findings indicate that specific HLA alleles associate with the risk of tuberculosis. In addition, lifestyle risk factors such as smoking contribute to the risk of developing tuberculosis.


Assuntos
Predisposição Genética para Doença , Tuberculose , Humanos , Estudo de Associação Genômica Ampla , Tuberculose/genética , Cadeias beta de HLA-DQ/genética , Cadeias HLA-DRB1/genética , Haplótipos/genética , Fatores de Risco , Alelos , Frequência do Gene
2.
Science ; 383(6685): eadi3808, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38386728

RESUMO

Cancer risk is influenced by inherited mutations, DNA replication errors, and environmental factors. However, the influence of genetic variation in immunosurveillance on cancer risk is not well understood. Leveraging population-level data from the UK Biobank and FinnGen, we show that heterozygosity at the human leukocyte antigen (HLA)-II loci is associated with reduced lung cancer risk in smokers. Fine-mapping implicated amino acid heterozygosity in the HLA-II peptide binding groove in reduced lung cancer risk, and single-cell analyses showed that smoking drives enrichment of proinflammatory lung macrophages and HLA-II+ epithelial cells. In lung cancer, widespread loss of HLA-II heterozygosity (LOH) favored loss of alleles with larger neopeptide repertoires. Thus, our findings nominate genetic variation in immunosurveillance as a critical risk factor for lung cancer.


Assuntos
Predisposição Genética para Doença , Antígenos de Histocompatibilidade Classe II , Vigilância Imunológica , Perda de Heterozigosidade , Neoplasias Pulmonares , Humanos , Antígenos de Histocompatibilidade Classe II/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Macrófagos Alveolares/imunologia , Fatores de Risco , Fumar/imunologia , Vigilância Imunológica/genética , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Mapeamento Cromossômico , Polimorfismo de Nucleotídeo Único
3.
Cell Genom ; 4(9): 100630, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39142284

RESUMO

Raynaud's syndrome is a dysautonomia where exposure to cold causes vasoconstriction and hypoxia, particularly in the extremities. We performed meta-analysis in four cohorts and discovered eight loci (ADRA2A, IRX1, NOS3, ACVR2A, TMEM51, PCDH10-DT, HLA, and RAB6C) where ADRA2A, ACVR2A, NOS3, TMEM51, and IRX1 co-localized with expression quantitative trait loci (eQTLs), particularly in distal arteries. CRISPR gene editing further showed that ADRA2A and NOS3 loci modified gene expression and in situ RNAscope clarified the specificity of ADRA2A in small vessels and IRX1 around small capillaries in the skin. A functional contraction assay in the cold showed lower contraction in ADRA2A-deficient and higher contraction in ADRA2A-overexpressing smooth muscle cells. Overall, our study highlights the power of genome-wide association testing with functional follow-up as a method to understand complex diseases. The results indicate temperature-dependent adrenergic signaling through ADRA2A, effects at the microvasculature by IRX1, endothelial signaling by NOS3, and immune mechanisms by the HLA locus in Raynaud's syndrome.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Doença de Raynaud , Doença de Raynaud/genética , Doença de Raynaud/imunologia , Humanos , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Feminino , Masculino
4.
EBioMedicine ; 93: 104630, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37301713

RESUMO

BACKGROUND: Poor sleep is associated with an increased risk of infections and all-cause mortality but the causal direction between poor sleep and respiratory infections has remained unclear. We examined if poor sleep contributes as a causal risk factor to respiratory infections. METHODS: We used data on insomnia, influenza and upper respiratory infections (URIs) from primary care and hospital records in the UK Biobank (N ≈ 231,000) and FinnGen (N ≈ 392,000). We computed logistic regression to assess association between poor sleep and infections, disease free survival hazard ratios, and performed Mendelian randomization analyses to assess causality. FINDINGS: Utilizing 23 years of registry data and follow-up, we discovered that insomnia diagnosis associated with increased risk for infections (FinnGen influenza Cox's proportional hazard (CPH) HR = 4.34 [3.90, 4.83], P = 4.16 × 10-159, UK Biobank influenza CPH HR = 1.54 [1.37, 1.73], P = 2.49 × 10-13). Mendelian randomization indicated that insomnia causally predisposed to influenza (inverse-variance weighted (IVW) OR = 1.65, P = 5.86 × 10-7), URI (IVW OR = 1.94, P = 8.14 × 10-31), COVID-19 infection (IVW OR = 1.08, P = 0.037) and risk of hospitalization from COVID-19 (IVW OR = 1.47, P = 4.96 × 10-5). INTERPRETATION: Our findings indicate that chronic poor sleep is a causal risk factor for contracting respiratory infections, and in addition contributes to the severity of respiratory infections. These findings highlight the role of sleep in maintaining sufficient immune response against pathogens. FUNDING: Instrumentarium Science Foundation, Academy of Finland, Signe and Ane Gyllenberg Foundation, National Institutes of Health.


Assuntos
COVID-19 , Influenza Humana , Infecções Respiratórias , Distúrbios do Início e da Manutenção do Sono , Humanos , Influenza Humana/complicações , Influenza Humana/epidemiologia , Saúde Pública , COVID-19/complicações , COVID-19/epidemiologia , Infecções Respiratórias/complicações , Infecções Respiratórias/epidemiologia , Sono , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
5.
medRxiv ; 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35194621

RESUMO

Background: Poor sleep is associated with an increased risk of infections and all-cause mortality, and acute sleep loss and disruption have been linked with inflammation and poorer immune control. Previous studies, however, have been unable to evidence causality between the chronic effects of poor sleep and respiratory infection risk. In light of the ongoing COVID-19 pandemic and potential future disease outbreaks, understanding the risk factors for these infections is of great importance. Aim: Our goal was to understand if chronic poor sleep could be identified as a causal risk factor for respiratory infections including influenza, upper respiratory infections and COVID-19. Methods: We used population cohorts from the UK Biobank (N ≈ 231,000) and FinnGen (N ≈ 327,000) with ICD-10 based electronic health records and obtained diagnoses of insomnia, influenza and upper respiratory infections (URIs) from primary care and hospital settings. We computed logistic regression to assess association between poor sleep and infections, disease free survival hazard ratios, and used summary statistics from genome-wide association studies of insomnia, influenza, URI and COVID-19 to perform Mendelian randomization analyses and assess causality. Findings: Utilizing 23 years of registry data and follow-up, we saw that insomnia diagnosis associated with increased risk for infections in FinnGen and in UK Biobank (FinnGen influenza HR = 5.32 [4.09, 6.92], P = 1.02×10-35, UK Biobank influenza HR = 1.54 [1.37, 1.73], P = 2.49×10-13). Mendelian randomization indicated that insomnia causally predisposed to influenza (OR = 1.59, P = 6.23×10-4), upper respiratory infections (OR = 1.71, P = 7.60×10-13), COVID-19 infection (OR = 1.08, P = 0.037) and risk of hospitalization from COVID-19 (OR = 1.47, P = 4.96×10-5). Conclusions: Our findings indicate that chronic poor sleep is a causal risk factor for contracting respiratory infections, and in addition contributes to the severity of respiratory infections. These findings highlight the role of sleep in maintaining sufficient immune response against pathogens as suggested by earlier work. As the current COVID-19 pandemic has increased the number of people suffering from poor sleep, safe interventions such as sleep management and treating individuals with insomnia could be promoted to reduce infections and save lives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA