Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Semin Immunol ; 59: 101628, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35779975

RESUMO

Neurodegenerative diseases (NDs) are heterogeneous neurological disorders characterized by a progressive loss of selected neuronal populations. A significant risk factor for most NDs is aging. Considering the constant increase in life expectancy, NDs represent a global public health burden. Axonal transport (AT) is a central cellular process underlying the generation and maintenance of neuronal architecture and connectivity. Deficits in AT appear to be a common thread for most, if not all, NDs. Neuroinflammation has been notoriously difficult to define in relation to NDs. Inflammation is a complex multifactorial process in the CNS, which varies depending on the disease stage. Several lines of evidence suggest that AT defect, axonopathy and neuroinflammation are tightly interlaced. However, whether these impairments play a causative role in NDs or are merely a downstream effect of neuronal degeneration remains unsettled. We still lack reliable information on the temporal relationship between these pathogenic mechanisms, although several findings suggest that they may occur early during ND pathophysiology. This article will review the latest evidence emerging on whether the interplay between AT perturbations and some aspects of CNS inflammation can participate in ND etiology, analyze their potential as therapeutic targets, and the urge to identify early surrogate biomarkers.


Assuntos
Doenças Neurodegenerativas , Humanos , Transporte Axonal , Inflamação , Doenças Neurodegenerativas/patologia , Doenças Neuroinflamatórias , Estresse Oxidativo
2.
Mol Psychiatry ; 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365240

RESUMO

Several iPSC-derived three-dimensional (3D) cultures have been generated to model Alzheimer's disease (AD). While some AD-related phenotypes have been identified across these cultures, none of them could recapitulate multiple AD-related hallmarks in one model. To date, the transcriptomic features of these 3D models have not been compared with those of human AD brains. However, these data are crucial to understanding the pertinency of these models for studying AD-related pathomechanisms over time. We developed a 3D bioengineered model of iPSC-derived neural tissue that combines a porous scaffold composed of silk fibroin protein with an intercalated collagen hydrogel to support the growth of neurons and glial cells into complex and functional networks for an extended time, a fundamental requisite for aging studies. Cultures were generated from iPSC lines obtained from two subjects carrying the familial AD (FAD) APP London mutation, two well-studied control lines, and an isogenic control. Cultures were analyzed at 2 and 4.5 months. At both time points, an elevated Aß42/40 ratio was detected in conditioned media from FAD cultures. However, extracellular Aß42 deposition and enhanced neuronal excitability were observed in FAD culture only at 4.5 months, suggesting that extracellular Aß deposition may trigger enhanced network activity. Remarkably, neuronal hyperexcitability has been described in AD patients early in the disease. Transcriptomic analysis revealed the deregulation of multiple gene sets in FAD samples. Such alterations were strikingly similar to those observed in human AD brains. These data provide evidence that our patient-derived FAD model develops time-dependent AD-related phenotypes and establishes a temporal relation among them. Furthermore, FAD iPSC-derived cultures recapitulate transcriptomic features of AD patients. Thus, our bioengineered neural tissue represents a unique tool to model AD in vitro over time.

3.
J Biol Chem ; 296: 100372, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33548223

RESUMO

Neural cell adhesion molecules 1 (NCAM1) and 2 (NCAM2) belong to the cell adhesion molecules of the immunoglobulin superfamily and have been shown to regulate formation, maturation, and maintenance of synapses. NCAM1 and NCAM2 undergo proteolysis, but the identity of all the proteases involved and how proteolysis is used to regulate their functions are not known. We report here that NCAM1 and NCAM2 are BACE1 substrates in vivo. NCAM1 and NCAM2 overexpressed in HEK cells were both cleaved by metalloproteinases or BACE1, and NCAM2 was also processed by γ-secretase. We identified the BACE1 cleavage site of NCAM1 (at Glu 671) and NCAM2 (at Glu 663) using mass spectrometry and site-directed mutagenesis. Next, we assessed BACE1-mediated processing of NCAM1 and NCAM2 in the mouse brain during aging. NCAM1 and NCAM2 were cleaved in the olfactory bulb of BACE1+/+ but not BACE1-/- mice at postnatal day 10 (P10), 4 and 12 months of age. In the hippocampus, a BACE1-specific soluble fragment of NCAM1 (sNCAM1ß) was only detected at P10. However, we observed an accumulation of full-length NCAM1 in hippocampal synaptosomes in 4-month-old BACE1-/- mice. We also found that polysialylated NCAM1 (PSA-NCAM1) levels were increased in BACE1-/- mice at P10 and demonstrated that BACE1 cleaves both NCAM1 and PSA-NCAM1 in vitro. In contrast, we did not find evidence for BACE1-dependent NCAM2 processing in the hippocampus at any age analyzed. In summary, our data demonstrate that BACE1 differentially processes NCAM1 and NCAM2 depending on the region of brain, subcellular localization, and age in vivo.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Antígeno CD56/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Secretases da Proteína Precursora do Amiloide/fisiologia , Animais , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/fisiologia , Encéfalo/metabolismo , Antígeno CD56/fisiologia , Moléculas de Adesão Celular/metabolismo , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Moléculas de Adesão de Célula Nervosa/fisiologia , Neurônios/metabolismo , Ácidos Siálicos/metabolismo , Análise Espaço-Temporal , Sinapses/metabolismo
4.
J Neurosci ; 38(14): 3480-3494, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29507146

RESUMO

The ß-secretase ß-site APP-cleaving enzyme 1 (BACE1) is deemed a major culprit in Alzheimer's disease, but accumulating evidence indicates that there is more to the enzyme than driving the amyloidogenic processing of the amyloid precursor protein. For example, BACE1 has emerged as an important regulator of neuronal activity through proteolytic and, most unexpectedly, also through nonproteolytic interactions with several ion channels. Here, we identify and characterize the voltage-gated K+ channel 3.4 (Kv3.4) as a new and functionally relevant interaction partner of BACE1. Kv3.4 gives rise to A-type current with fast activating and inactivating kinetics and serves to repolarize the presynaptic action potential. We found that BACE1 and Kv3.4 are highly enriched and remarkably colocalized in hippocampal mossy fibers (MFs). In BACE1-/- mice of either sex, Kv3.4 surface expression was significantly reduced in the hippocampus and, in synaptic fractions thereof, Kv3.4 was specifically diminished, whereas protein levels of other presynaptic K+ channels such as KCa1.1 and KCa2.3 remained unchanged. The apparent loss of presynaptic Kv3.4 affected the strength of excitatory transmission at the MF-CA3 synapse in hippocampal slices of BACE1-/- mice when probed with the Kv3 channel blocker BDS-I. The effect of BACE1 on Kv3.4 expression and function should be bidirectional, as predicted from a heterologous expression system, in which BACE1 cotransfection produced a concomitant upregulation of Kv3.4 surface level and current based on a physical interaction between the two proteins. Our data show that, by targeting Kv3.4 to presynaptic sites, BACE1 endows the terminal with a powerful means to regulate the strength of transmitter release.SIGNIFICANCE STATEMENT The ß-secretase ß-site APP-cleaving enzyme 1 (BACE1) is infamous for its crucial role in the pathogenesis of Alzheimer's disease, but its physiological functions in the intact nervous system are only gradually being unveiled. Here, we extend previous work implicating BACE1 in the expression and function of voltage-gated Na+ and K+ channels. Specifically, we characterize voltage-gated K+ channel 3.4 (Kv3.4), a presynaptic K+ channel required for action potential repolarization, as a novel interaction partner of BACE1 at the mossy fiber (MF)-CA3 synapse of the hippocampus. BACE1 promotes surface expression of Kv3.4 at MF terminals, most likely by physically associating with the channel protein in a nonenzymatic fashion. We advance the BACE1-Kv3.4 interaction as a mechanism to strengthen the temporal control over transmitter release from MF terminals.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Fibras Musgosas Hipocampais/metabolismo , Canais de Potássio Shaw/metabolismo , Animais , Células Cultivadas , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transporte Proteico
5.
J Biol Chem ; 291(30): 15753-66, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27302062

RESUMO

The ß-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-ß, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-ß levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Endopeptidases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Lisossomos/metabolismo , Proteólise , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Ácido Aspártico Endopeptidases/genética , Linhagem Celular Tumoral , Endopeptidases/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Humanos , Lisossomos/genética , Transporte Proteico/genética , Ubiquitina Tiolesterase/genética
6.
Cereb Cortex ; 25(8): 2306-20, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24610117

RESUMO

Traumatic brain injury (TBI) is a major risk factor for developing pharmaco-resistant epilepsy. Although disruptions in brain circuitry are associated with TBI, the precise mechanisms by which brain injury leads to epileptiform network activity is unknown. Using controlled cortical impact (CCI) as a model of TBI, we examined how cortical excitability and glutamatergic signaling was altered following injury. We optically mapped cortical glutamate signaling using FRET-based glutamate biosensors, while simultaneously recording cortical field potentials in acute brain slices 2-4 weeks following CCI. Cortical electrical stimulation evoked polyphasic, epileptiform field potentials and disrupted the input-output relationship in deep layers of CCI-injured cortex. High-speed glutamate biosensor imaging showed that glutamate signaling was significantly increased in the injured cortex. Elevated glutamate responses correlated with epileptiform activity, were highest directly adjacent to the injury, and spread via deep cortical layers. Immunoreactivity for markers of GABAergic interneurons were significantly decreased throughout CCI cortex. Lastly, spontaneous inhibitory postsynaptic current frequency decreased and spontaneous excitatory postsynaptic current increased after CCI injury. Our results suggest that specific cortical neuronal microcircuits may initiate and facilitate the spread of epileptiform activity following TBI. Increased glutamatergic signaling due to loss of GABAergic control may provide a mechanism by which TBI can give rise to post-traumatic epilepsy.


Assuntos
Lesões Encefálicas/fisiopatologia , Córtex Cerebral/fisiopatologia , Neurônios GABAérgicos/fisiologia , Ácido Glutâmico/metabolismo , Animais , Astrócitos/patologia , Astrócitos/fisiologia , Lesões Encefálicas/patologia , Córtex Cerebral/patologia , Modelos Animais de Doenças , Epilepsia/fisiopatologia , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Neurônios GABAérgicos/patologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Parvalbuminas/metabolismo , Somatostatina/metabolismo , Técnicas de Cultura de Tecidos
7.
bioRxiv ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38712028

RESUMO

The disease's trajectory of Alzheimer's disease (AD) is associated with and worsened by hippocampal hyperexcitability. Here we show that during the asymptomatic stage in a knock in mouse model of Alzheimer's disease (APPNL-G-F/NL-G-F; APPKI), hippocampal hyperactivity occurs at the synaptic compartment, propagates to the soma and is manifesting at low frequencies of stimulation. We show that this aberrant excitability is associated with a deficient adenosine tone, an inhibitory neuromodulator, driven by reduced levels of CD39/73 enzymes, responsible for the extracellular ATP-to-adenosine conversion. Both pharmacologic (adenosine kinase inhibitor) and non-pharmacologic (ketogenic diet) restorations of the adenosine tone successfully normalize hippocampal neuronal activity. Our results demonstrated that neuronal hyperexcitability during the asymptomatic stage of a KI model of Alzheimer's disease originated at the synaptic compartment and is associated with adenosine deficient tone. These results extend our comprehension of the hippocampal vulnerability associated with the asymptomatic stage of Alzheimer's disease.

8.
J Neurosci ; 32(30): 10423-37, 2012 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-22836275

RESUMO

Traumatic brain injury (TBI) is one of the most robust environmental risk factors for Alzheimer's disease (AD). Compelling evidence is accumulating that a single event of TBI is associated with increased levels of Aß. However, the underlying molecular mechanisms remain unknown. We report here that the BACE1 interacting protein, GGA3, is depleted while BACE1 levels increase in the acute phase after injury (48 h) in a mouse model of TBI. We further demonstrated the role of GGA3 in the regulation of BACE1 in vivo by showing that BACE1 levels are increased in the brain of GGA3-null mice. We next found that head trauma potentiates BACE1 elevation in GGA3-null mice in the acute phase after TBI, and discovered that GGA1, a GGA3 homolog, is a novel caspase-3 substrate depleted at 48 h after TBI. Moreover, GGA1 silencing potentiates BACE1 elevation induced by GGA3 deletion in neurons in vitro, indicating that GGA1 and GGA3 synergistically regulate BACE1. Accordingly, we found that levels of both GGA1 and GGA3 are depleted while BACE1 levels are increased in a series of postmortem AD brains. Finally, we show that GGA3 haploinsufficiency results in sustained elevation of BACE1 and Aß levels while GGA1 levels are restored in the subacute phase (7 d) after injury. In conclusion, our data indicate that depletion of GGA1 and GGA3 engender a rapid and robust elevation of BACE1 in the acute phase after injury. However, the efficient disposal of the acutely accumulated BACE1 solely depends on GGA3 levels in the subacute phase of injury.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Lesões Encefálicas/metabolismo , Encéfalo/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Caspase 3/metabolismo , Camundongos , Camundongos Knockout , Neurônios/metabolismo
9.
J Biol Chem ; 287(51): 42867-80, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23109336

RESUMO

ß-Site amyloid precursor protein-cleaving enzyme (BACE1) is a membrane-tethered member of the aspartyl proteases that has been identified as ß-secretase. BACE1 is targeted through the secretory pathway to the plasma membrane and then is internalized to endosomes. Sorting of membrane proteins to the endosomes and lysosomes is regulated by the interaction of signals present in their carboxyl-terminal fragment with specific trafficking molecules. The BACE1 carboxyl-terminal fragment contains a di-leucine sorting signal ((495)DDISLL(500)) and a ubiquitination site at Lys-501. Here, we report that lack of ubiquitination at Lys-501 (BACE1K501R) does not affect the rate of endocytosis but produces BACE1 stabilization and accumulation of BACE1 in early and late endosomes/lysosomes as well as at the cell membrane. In contrast, the disruption of the di-leucine motif (BACE1LLAA) greatly impairs BACE1 endocytosis and produces a delayed retrograde transport of BACE1 to the trans-Golgi network (TGN) and a delayed delivery of BACE1 to the lysosomes, thus decreasing its degradation. Moreover, the combination of the lack of ubiquitination at Lys-501 and the disruption of the di-leucine motif (BACE1LLAA/KR) produces additive effects on BACE1 stabilization and defective internalization. Finally, BACE1LLAA/KR accumulates in the TGN, while its levels are decreased in EEA1-positive compartments indicating that both ubiquitination at Lys-501 and the di-leucine motif are necessary for the trafficking of BACE1 from the TGN to early endosomes. Our studies have elucidated a differential role for the di-leucine motif and ubiquitination at Lys-501 in BACE1 endocytosis, trafficking, and degradation and suggest the involvement of multiple adaptor molecules.


Assuntos
Secretases da Proteína Precursora do Amiloide/química , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/metabolismo , Endocitose , Leucina/metabolismo , Lisina/metabolismo , Ubiquitinação , Motivos de Aminoácidos , Sequência de Aminoácidos , Precursor de Proteína beta-Amiloide/metabolismo , Endossomos/enzimologia , Estabilidade Enzimática , Humanos , Lisossomos/enzimologia , Modelos Biológicos , Dados de Sequência Molecular , Processamento de Proteína Pós-Traducional , Transporte Proteico , Frações Subcelulares/enzimologia , Rede trans-Golgi/enzimologia
10.
Methods Mol Biol ; 2683: 185-192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37300775

RESUMO

Available models to study neuropathological diseases include cell cultures and animal models. Brain pathologies, however, are often poorly recapitulated in animal models. 2D cell culture systems are well established and have been used since the early 1900s to grow cells on flat dishes. However, conventional 2D neural culture systems, which lack key features of the brain's 3D microenvironment, often inaccurately represent the diversity and maturation of multiple cell types and their interaction under physiological and pathological conditions.To improve CNS modeling, we have designed a 3D bioengineered neural tissue model generated from human iPSC-derived neural precursor cells (NPCs). This NPC-derived biomaterial scaffold, composed of silk fibroin with an intercalated hydrogel, matches the mechanical properties of native brain tissue and supports the long-term differentiation of neural cells in a donut-shaped sponge within an optically clear central window. This chapter describes integrating iPSC-derived NPCs in these silk-collagen scaffolds and differentiating them into neural cells over time.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Animais , Humanos , Engenharia Tecidual , Alicerces Teciduais , Neurônios , Diferenciação Celular
11.
Neurodegener Dis ; 9(4): 187-98, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22584394

RESUMO

BACKGROUND: Activated microglia with macrophage-like functions invade and surround ß-amyloid (Aß) plaques in Alzheimer's disease (AD), possibly contributing to the turnover of Aß, but they can also secrete proinflammatory factors that may be involved in the pathogenesis of AD. Microglia are known to modulate adult hippocampal neurogenesis. OBJECTIVES/METHODS: To determine the role of microglia on neurogenesis in brains with Aß pathology, we inhibited microglial activation with the tetracycline derivative minocycline in doubly transgenic mice expressing mutant human amyloid precursor protein (APP) and mutant human presenilin-1 (PS1). RESULTS: Minocycline increased the survival of new dentate granule cells in APP/PS1 mice indicated by more BrdU+/NeuN+ cells as compared to vehicle-treated transgenic littermates, accompanied by improved behavioral performance in a hippocampus-dependent learning task. Both brain levels of Aß and Aß-related morphological deficits in the new neurons labeled with GFP-expressing retrovirus were unaffected in minocycline-treated mice. CONCLUSIONS: These results suggest a role for microglia in Aß-related functional deficits and in suppressing the survival of new neurons, and show that modulation of microglial function with minocycline can protect hippocampal neurogenesis in the presence of Aß pathology.


Assuntos
Doença de Alzheimer/fisiopatologia , Transtornos Cognitivos/fisiopatologia , Hipocampo/fisiopatologia , Microglia/efeitos dos fármacos , Minociclina/farmacologia , Neurogênese/fisiologia , Doença de Alzheimer/prevenção & controle , Precursor de Proteína beta-Amiloide/genética , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Transtornos Cognitivos/prevenção & controle , Modelos Animais de Doenças , Feminino , Hipocampo/citologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/fisiologia , Minociclina/uso terapêutico , Mutação/genética , Presenilina-1/genética
12.
Neuron ; 54(5): 721-37, 2007 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-17553422

RESUMO

Beta-site APP-cleaving enzyme (BACE) is required for production of the Alzheimer's disease (AD)-associated Abeta protein. BACE levels are elevated in AD brain, and increasing evidence reveals BACE as a stress-related protease that is upregulated following cerebral ischemia. However, the molecular mechanism responsible is unknown. We show that increases in BACE and beta-secretase activity are due to posttranslational stabilization following caspase activation. We also found that during cerebral ischemia, levels of GGA3, an adaptor protein involved in BACE trafficking, are reduced, while BACE levels are increased. RNAi silencing of GGA3 also elevated levels of BACE and Abeta. Finally, in AD brain samples, GGA3 protein levels were significantly decreased and inversely correlated with increased levels of BACE. In summary, we have elucidated a GGA3-dependent mechanism regulating BACE levels and beta-secretase activity. This mechanism may explain increased cerebral levels of BACE and Abeta following cerebral ischemia and existing in AD.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Encéfalo/enzimologia , Regulação para Baixo/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Fatores de Ribosilação do ADP/genética , Proteínas Adaptadoras de Transporte Vesicular/genética , Doença de Alzheimer/enzimologia , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/fisiopatologia , Isquemia Encefálica/enzimologia , Isquemia Encefálica/fisiopatologia , Bovinos , Células Cultivadas , Cães , Humanos , Camundongos , Dados de Sequência Molecular , Interferência de RNA/fisiologia , Ratos , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
13.
J Biol Chem ; 285(31): 24108-19, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20484053

RESUMO

BACE1 (beta-site amyloid precursor protein-cleaving enzyme 1) is a membrane-tethered member of the aspartyl proteases, essential for the production of beta-amyloid, a toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. The BACE1 C-terminal fragment contains a DXXLL motif that has been shown to bind the VHS (VPS27, Hrs, and STAM) domain of GGA1-3 (Golgi-localized gamma-ear-containing ARF-binding proteins). GGAs are trafficking molecules involved in the transport of proteins containing the DXXLL signal from the Golgi complex to endosomes. Moreover, GGAs bind ubiquitin and traffic synthetic and endosomal ubiquitinated cargoes to lysosomes. We have previously shown that depletion of GGA3 results in increased BACE1 levels and activity because of impaired lysosomal degradation. Here, we report that the accumulation of BACE1 is rescued by the ectopic expression of GGA3 in H4 neuroglioma cells depleted of GGA3. Accordingly, the overexpression of GGA3 reduces the levels of BACE1 and beta-amyloid. We then established that mutations in the GGA3 VPS27, Hrs, and STAM domain (N91A) or in BACE1 di-leucine motif (L499A/L500A), able to abrogate their binding, did not affect the ability of ectopically expressed GGA3 to rescue BACE1 accumulation in cells depleted of GGA3. Instead, we found that BACE1 is ubiquitinated at lysine 501 and is mainly monoubiquitinated and Lys-63-linked polyubiquitinated. Finally, a GGA3 mutant with reduced ability to bind ubiquitin (GGA3L276A) was unable to regulate BACE1 levels both in rescue and overexpression experiments. These findings indicate that levels of GGA3 tightly and inversely regulate BACE1 levels via interaction with ubiquitin sorting machinery.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/química , Secretases da Proteína Precursora do Amiloide/química , Ácido Aspártico Endopeptidases/química , Regulação da Expressão Gênica , Ubiquitina/química , Sequência de Aminoácidos , Peptídeos beta-Amiloides/química , Animais , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Humanos , Lisossomos/química , Lisossomos/metabolismo , Camundongos , Dados de Sequência Molecular , Ligação Proteica , Homologia de Sequência de Aminoácidos , Transdução de Sinais
14.
Circulation ; 121(10): 1216-26, 2010 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-20194882

RESUMO

BACKGROUND: Heart failure is a debilitating condition resulting in severe disability and death. In a subset of cases, clustered as idiopathic dilated cardiomyopathy (iDCM), the origin of heart failure is unknown. In the brain of patients with dementia, proteinaceous aggregates and abnormal oligomeric assemblies of beta-amyloid impair cell function and lead to cell death. METHODS AND RESULTS: We have similarly characterized fibrillar and oligomeric assemblies in the hearts of iDCM patients, pointing to abnormal protein aggregation as a determinant of iDCM. We also showed that oligomers alter myocyte Ca(2+) homeostasis. Additionally, we have identified 2 new sequence variants in the presenilin-1 (PSEN1) gene promoter leading to reduced gene and protein expression. We also show that presenilin-1 coimmunoprecipitates with SERCA2a. CONCLUSIONS: On the basis of these findings, we propose that 2 mechanisms may link protein aggregation and cardiac function: oligomer-induced changes on Ca(2+) handling and a direct effect of PSEN1 sequence variants on excitation-contraction coupling protein function.


Assuntos
Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Presenilina-1/genética , Proteínas/química , Adulto , Idoso , Amiloide/análise , Peptídeos beta-Amiloides/análise , Cálcio/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Mutação , Polimorfismo de Nucleotídeo Único , Presenilina-2/genética
15.
Hum Mol Genet ; 18(20): 3987-96, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19608551

RESUMO

ADAM10, a member of a disintegrin and metalloprotease family, is an alpha-secretase capable of anti-amyloidogenic proteolysis of the amyloid precursor protein. Here, we present evidence for genetic association of ADAM10 with Alzheimer's disease (AD) as well as two rare potentially disease-associated non-synonymous mutations, Q170H and R181G, in the ADAM10 prodomain. These mutations were found in 11 of 16 affected individuals (average onset age 69.5 years) from seven late-onset AD families. Each mutation was also found in one unaffected subject implying incomplete penetrance. Functionally, both mutations significantly attenuated alpha-secretase activity of ADAM10 (>70% decrease), and elevated Abeta levels (1.5-3.5-fold) in cell-based studies. In summary, we provide the first evidence of ADAM10 as a candidate AD susceptibility gene, and report two potentially pathogenic mutations with incomplete penetrance for late-onset familial AD.


Assuntos
Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Doença de Alzheimer/enzimologia , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Proteína ADAM10 , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Animais , Células CHO , Cricetinae , Cricetulus , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Polimorfismo de Nucleotídeo Único
16.
Sci Transl Med ; 12(570)2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208500

RESUMO

Axonal dystrophy, indicative of perturbed axonal transport, occurs early during Alzheimer's disease (AD) pathogenesis. Little is known about the mechanisms underlying this initial sign of the pathology. This study proves that Golgi-localized γ-ear-containing ARF binding protein 3 (GGA3) loss of function, due to Gga3 genetic deletion or a GGA3 rare variant that cosegregates with late-onset AD, disrupts the axonal trafficking of the ß-site APP-cleaving enzyme 1 (BACE1) resulting in its accumulation in axonal swellings in cultured neurons and in vivo. We show that BACE pharmacological inhibition ameliorates BACE1 axonal trafficking and diminishes axonal dystrophies in Gga3 null neurons in vitro and in vivo. These data indicate that axonal accumulation of BACE1 engendered by GGA3 loss of function results in local toxicity leading to axonopathy. Gga3 deletion exacerbates axonal dystrophies in a mouse model of AD before ß-amyloid (Aß) deposition. Our study strongly supports a role for GGA3 in AD pathogenesis, where GGA3 loss of function triggers BACE1 axonal accumulation independently of extracellular Aß, and initiates a cascade of events leading to the axonal damage distinctive of the early stage of AD.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Animais , Axônios , Camundongos
17.
Sci Rep ; 9(1): 19877, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882662

RESUMO

BACE1 is the first enzyme involved in APP processing, thus it is a strong therapeutic target candidate for Alzheimer's disease. The observation of deleterious phenotypes in BACE1 Knock-out (KO) mouse models (germline and conditional) raised some concerns on the safety and tolerability of BACE1 inhibition. Here, we have employed a tamoxifen inducible BACE1 conditional Knock-out (cKO) mouse model to achieve a controlled partial depletion of BACE1 in adult mice. Biochemical and behavioural characterization was performed at two time points: 4-5 months (young mice) and 12-13 months (aged mice). A ~50% to ~70% BACE1 protein reduction in hippocampus and cortex, respectively, induced a significant reduction of BACE1 substrates processing and decrease of Aßx-40 levels at both ages. Hippocampal axonal guidance and peripheral nerve myelination were not affected. Aged mice displayed a CA1 long-term potentiation (LTP) deficit that was not associated with memory impairment. Our findings indicate that numerous phenotypes observed in germline BACE1 KO reflect a fundamental role of BACE1 during development while other phenotypes, observed in adult cKO, may be absent when partially rather than completely deleting BACE1. However, we demonstrated that partial depletion of BACE1 still induces CA1 LTP impairment, supporting a role of BACE1 in synaptic plasticity in adulthood.


Assuntos
Secretases da Proteína Precursora do Amiloide/deficiência , Ácido Aspártico Endopeptidases/deficiência , Orientação de Axônios/genética , Região CA1 Hipocampal , Córtex Cerebral , Deleção de Genes , Plasticidade Neuronal/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Região CA1 Hipocampal/enzimologia , Região CA1 Hipocampal/patologia , Córtex Cerebral/enzimologia , Córtex Cerebral/patologia , Camundongos , Camundongos Knockout
18.
Mol Neurodegener ; 13(1): 6, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29391027

RESUMO

BACKGROUND: ß-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the rate-limiting enzyme in the production of amyloid beta (Aß), the toxic peptide that accumulates in the brains of Alzheimer's disease (AD) patients. Our previous studies have shown that the clathrin adaptor Golgi-localized γ-ear-containing ARF binding protein 3 (GGA3) plays a key role in the trafficking of BACE1 to lysosomes, where it is normally degraded. GGA3 depletion results in BACE1 stabilization both in vitro and in vivo. Moreover, levels of GGA3 are reduced and inversely related to BACE1 levels in post-mortem brains of AD patients. METHOD: In order to assess the effect of GGA3 deletion on AD-like phenotypes, we crossed GGA3 -/- mice with 5XFAD mice. BACE1-mediated processing of APP and the cell adhesion molecule L1 like protein (CHL1) was measured as well as levels of Aß42 and amyloid burden. RESULTS: In 5XFAD mice, we found that hippocampal and cortical levels of GGA3 decreased while BACE1 levels increased with age, similar to what is observed in human AD brains. GGA3 deletion prevented age-dependent elevation of BACE1 in GGA3KO;5XFAD mice. We also found that GGA3 deletion resulted in increased hippocampal levels of Aß42 and amyloid burden in 5XFAD mice at 12 months of age. While levels of BACE1 did not change with age and gender in GGAKO;5XFAD mice, amyloid precursor protein (APP) levels increased with age and were higher in female mice. Moreover, elevation of APP was associated with a decreased BACE1-mediated processing of CHL1 not only in 12 months old 5XFAD mice but also in human brains from subjects affected by Down syndrome, most likely due to substrate competition. CONCLUSION: This study demonstrates that GGA3 depletion is a leading candidate mechanism underlying elevation of BACE1 in AD. Furthermore, our findings suggest that BACE1 inhibition could exacerbate mechanism-based side effects in conditions associated with APP elevation (e.g. Down syndrome) owing to impairment of BACE1-mediated processing of CHL1. Therefore, therapeutic approaches aimed to restore GGA3 function and to prevent the down stream effects of its depletion (e.g. BACE1 elevation) represent an attractive alternative to BACE inhibition for the prevention/treatment of AD.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Encéfalo/patologia , Moléculas de Adesão Celular/metabolismo , Adulto , Idoso , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade
19.
ACS Biomater Sci Eng ; 4(12): 4278-4288, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33304995

RESUMO

Three-dimensional in vitro cell culture models, particularly for the central nervous system, allow for the exploration of mechanisms of organ development, cellular interactions, and disease progression within defined environments. Here we describe the development and characterization of three-dimensional tissue models that promote the differentiation and long-term survival of functional neural networks. These tissue cultures show diverse cell populations including neurons and glial cells (astrocytes) interacting in 3D with spontaneous neural activity confirmed through electrophysiological recordings and calcium imaging over at least 8 months. This approach allows for the direct integration of pluripotent stem cells into the 3D construct bypassing early neural differentiation steps (embryoid bodies and neural rosettes), which streamlines the process while also providing a system that can be manipulated to support a variety of experimental applications. This tissue model has been tested in stem cells derived from healthy individuals as well as Alzheimer's and Parkinson's disease patients, with similar growth and gene expression responses indicating potential use in the modeling of disease states related to neurodegenerative diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA