RESUMO
Digestive and respiratory tracts are inhabited by rich bacterial communities that can vary between their different segments. In comparison with other bird taxa with developed caeca, parrots that lack caeca have relatively lower variability in intestinal morphology. Here, based on 16S rRNA metabarcoding, we describe variation in microbiota across different parts of parrot digestive and respiratory tracts both at interspecies and intraspecies levels. In domesticated budgerigar (Melopsittacus undulatus), we describe the bacterial variation across eight selected sections of respiratory and digestive tracts, and three non-destructively collected sample types (faeces, and cloacal and oral swabs). Our results show important microbiota divergence between the upper and lower digestive tract, but similarities between respiratory tract and crop, and also between different intestinal segments. Faecal samples appear to provide a better proxy for intestinal microbiota composition than the cloacal swabs. Oral swabs had a similar bacterial composition as the crop and trachea. For a subset of tissues, we confirmed the same pattern also in six different parrot species. Finally, using the faeces and oral swabs in budgerigars, we revealed high oral, but low faecal microbiota stability during a 3-week period mimicking pre-experiment acclimation. Our findings provide a basis essential for microbiota-related experimental planning and result generalisation in non-poultry birds.
Assuntos
Microbiota , Papagaios , Animais , Papagaios/genética , RNA Ribossômico 16S/genética , Sistema Respiratório/microbiologia , Bactérias/genéticaRESUMO
Driven by co-evolution with pathogens, host immunity continuously adapts to optimize defence against pathogens within a given environment. Recent advances in genetics, genomics and transcriptomics have enabled a more detailed investigation into how immunogenetic variation shapes the diversity of immune responses seen across domestic and wild animal species. However, a deeper understanding of the diverse molecular mechanisms that shape immunity within and among species is still needed to gain insight into-and generate evolutionary hypotheses on-the ultimate drivers of immunological differences. Here, we discuss current advances in our understanding of molecular evolution underpinning jawed vertebrate immunity. First, we introduce the immunome concept, a framework for characterizing genes involved in immune defence from a comparative perspective, then we outline how immune genes of interest can be identified. Second, we focus on how different selection modes are observed acting across groups of immune genes and propose hypotheses to explain these differences. We then provide an overview of the approaches used so far to study the evolutionary heterogeneity of immune genes on macro and microevolutionary scales. Finally, we discuss some of the current evidence as to how specific pathogens affect the evolution of different groups of immune genes. This review results from the collective discussion on the current key challenges in evolutionary immunology conducted at the ESEB 2021 Online Satellite Symposium: Molecular evolution of the vertebrate immune system, from the lab to natural populations.
Assuntos
Imunidade Adaptativa , Evolução Biológica , Animais , Imunidade Adaptativa/genética , Vertebrados/genética , Evolução Molecular , Imunidade Inata/genéticaRESUMO
In vertebrates, cannabinoids modulate neuroimmune interactions through two cannabinoid receptors (CNRs) conservatively expressed in the brain (CNR1, syn. CB1) and in the periphery (CNR2, syn. CB2). Our comparative genomic analysis indicates several evolutionary losses in the CNR2 gene that is involved in immune regulation. Notably, we show that the CNR2 gene pseudogenized in all parrots (Psittaciformes). This CNR2 gene loss occurred because of chromosomal rearrangements. Our positive selection analysis suggests the absence of any specific molecular adaptations in parrot CNR1 that would compensate for the CNR2 loss in the modulation of the neuroimmune interactions. Using transcriptomic data from the brains of birds with experimentally induced sterile inflammation we highlight possible functional effects of such a CNR2 gene loss. We compare the expression patterns of CNR and neuroinflammatory markers in CNR2-deficient parrots (represented by the budgerigar, Melopsittacus undulatus and five other parrot species) with CNR2-intact passerines (represented by the zebra finch, Taeniopygia guttata). Unlike in passerines, stimulation with lipopolysaccharide resulted in neuroinflammation in the parrots linked with a significant upregulation of expression in proinflammatory cytokines (including interleukin 1 beta (IL1B) and 6 (IL6)) in the brain. Our results indicate the functional importance of the CNR2 gene loss for increased sensitivity to brain inflammation.
Assuntos
Papagaios , Animais , Papagaios/genética , Receptores de CanabinoidesRESUMO
While seasonal trends in testosterone levels are known from cross-cohort studies, data on testosterone inter-annual individual repeatability in wild birds are rare. Also, our understanding of hormonal age-dependent changes in testosterone levels is limited. We assessed plasma testosterone levels in 105 samples originating from 49 repeatedly captured free-living great tits (Parus major) sampled during the nesting to investigate their relative long-term repeatability and within-individual changes. Furthermore, we examined the inter-annual repeatability of condition-related traits (carotenoid- and melanin-based plumage ornamentation, ptilochronological feather growth rate, body mass, and haematological heterophil/lymphocyte ratio) and their relationships to testosterone levels. We show that testosterone levels are inter-annually repeatable in females, with a non-significant pattern in males, both in absolute values and individual ranks (indicating the maintenance of relative status in a population). In males, we found a quadratic dependence of testosterone levels on age, with a peak in midlife. In contrast, female testosterone levels showed no age-dependent trends. The inter-annual repeatability of condition-related traits ranged from zero to moderate and was mostly unrelated to plasma testosterone concentrations. However, males with elevated testosterone had significantly higher carotenoid-pigmented yellow plumage brightness, a trait presumably involved in mating. Showing inter-annual repeatability in testosterone levels, this research opens the way to further understanding the causes of variation in condition-related traits. Based on a longitudinal dataset, this study demonstrates that male plasma testosterone undergoes age-related changes that may regulate resource allocation. Our results thus suggest that, unlike females, male birds undergo hormonal senescence similar to mammals.
Assuntos
Plumas , Passeriformes , Animais , Animais Selvagens , Feminino , Humanos , Masculino , Reprodução , TestosteronaRESUMO
Despite widespread variability and redundancy abounding animal immunity, little is currently known about the rate of evolutionary convergence (functionally analogous traits not inherited from a common ancestor) in host molecular adaptations to parasite selective pressures. Toll-like receptors (TLRs) provide the molecular interface allowing hosts to recognize pathogenic structures and trigger early danger signals initiating an immune response. Using a novel combination of bioinformatic approaches, here we explore genetic variation in ligand-binding regions of bacteria-sensing TLR4 and TLR5 in 29 species belonging to the tit family of passerine birds (Aves: Paridae). Three out of the four consensual positively selected sites in TLR4 and six out of 14 positively selected positions in TLR5 were located on the receptor surface near the functionally important sites, and based on the phylogenetic pattern evolved in a convergent (parallel) manner. This type of evolution was also seen at one N-glycosylation site and two positively selected phosphorylation sites, providing the first evidence of convergence in post-translational modifications in evolutionary immunology. Finally, the overall mismatch between phylogeny and the clustering of surface charge distribution demonstrates that convergence is common in overall TLR4 and TLR5 molecular phenotypes involved in ligand binding. Our analysis did not reveal any broad ecological traits explaining the convergence observed in electrostatic potentials, suggesting that information on microbial symbionts may be needed to explain TLR evolution. Adopting state-of-the-art predictive structural bionformatics, we have outlined a new broadly applicable methodological approach to estimate the functional significance of positively selected variation and test for the adaptive molecular convergence in protein-coding polymorphisms.
Assuntos
Evolução Molecular , Passeriformes , Animais , Imunidade Inata/genética , Fenótipo , Filogenia , Seleção GenéticaRESUMO
Vertebrate gut microbiota (GM) is comprised of a taxonomically diverse consortium of symbiotic and commensal microorganisms that have a pronounced effect on host physiology, immune system function and health status. Despite much research on interactions between hosts and their GM, the factors affecting inter- and intraspecific GM variation in wild populations are still poorly known. We analysed data on faecal microbiota composition in 51 passerine species (319 individuals) using Illumina MiSeq sequencing of bacterial 16S rRNA (V3-V4 variable region). Despite pronounced interindividual variation, GM composition exhibited significant differences at the interspecific level, accounting for approximately 20%-30% of total GM variation. We also observed a significant correlation between GM composition divergence and host's phylogenetic divergence, with strength of correlation higher than that of GM vs. ecological or life history traits and geographic variation. The effect of host's phylogeny on GM composition was significant, even after statistical control for these confounding factors. Hence, our data do not support codiversification of GM and passerine phylogeny solely as a by-product of their ecological divergence. Furthermore, our findings do not support that GM vs. host's phylogeny codiversification is driven primarily through trans-generational GM transfer as the GM vs. phylogeny correlation does not increase with higher sequence similarity used when delimiting operational taxonomic units. Instead, we hypothesize that the GM vs. phylogeny correlation may arise as a consequence of interspecific divergence of genes that directly or indirectly modulate composition of GM.
Assuntos
Bactérias/classificação , Microbioma Gastrointestinal/genética , Passeriformes/microbiologia , Filogenia , Animais , República Tcheca , Fezes/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Passeriformes/classificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
During early ontogeny, microbiome affects development of the gastrointestinal tract, immunity, and survival in vertebrates. Bird eggs are thought to be (1) initially sterile (sterile egg hypothesis) and (2) colonized after oviposition through horizontal trans-shell migration, or (3) initially seeded with bacteria by vertical transfer from mother oviduct. To date, however, little empirical data illuminate the contribution of these mechanisms to gut microbiota formation in avian embryos. We investigated microbiome of the egg content (day 0; E0-egg), embryonic gut at day 13 (E13) and female faeces in a free-living passerine, the great tit (Parus major), using a methodologically advanced procedure combining 16S rRNA gene sequencing and microbe-specific qPCR assays. Our metabarcoding revealed that the avian egg is (nearly) sterile, but acquires a slightly richer microbiome during the embryonic development. Of the three potentially pathogenic bacteria targeted by qPCR, only Dietzia was found in E0-egg (yet also in negative controls), E13 gut and female samples, which might indicate possible vertical transfer. Unlike in poultry, we have shown that major bacterial colonization of the gut in passerines does not occur before hatching. We emphasize that protocols that carefully check for environmental contamination are critical in studies with low-bacterial biomass samples.
Assuntos
Microbioma Gastrointestinal , Microbiota , Passeriformes , Feminino , Animais , Passeriformes/microbiologia , RNA Ribossômico 16S/genética , Bactérias/genéticaRESUMO
Regulation of neuroimmune interactions varies across avian species. Little is presently known about the interplay between periphery and central nervous system (CNS) in parrots, birds sensitive to neuroinflammation. Here we investigated the systemic and CNS responses to dextran sulphate sodium (DSS)- and lipopolysaccharide (LPS)-induced subclinical acute peripheral inflammation in budgerigar (Melopsittacus undulatus). Three experimental treatment groups differing in DSS and LPS stimulation were compared to controls. Individuals treated with DSS showed significant histological intestinal damage. Through quantitative proteomics we described changes in plasma (PL) and cerebrospinal fluid (CSF) composition. In total, we identified 180 proteins in PL and 978 proteins in CSF, with moderate co-structure between the proteomes. Between treatments we detected differences in immune, coagulation and metabolic pathways. Proteomic variation was associated with the levels of pro-inflammatory cytokine mRNA expression in intestine and brain. Our findings shed light on systemic impacts of peripheral low-grade inflammation in birds.
Assuntos
Sistema Nervoso Central , Sulfato de Dextrana , Inflamação , Lipopolissacarídeos , Melopsittacus , Proteoma , Animais , Proteoma/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Lipopolissacarídeos/imunologia , Melopsittacus/imunologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/imunologia , Proteômica/métodos , Citocinas/metabolismo , Proteínas Aviárias/metabolismo , Proteínas Aviárias/genética , Encéfalo/metabolismo , Encéfalo/imunologia , Neuroimunomodulação , Intestinos/imunologia , Doenças Neuroinflamatórias/imunologia , Doenças das Aves/imunologia , Doenças das Aves/metabolismoRESUMO
Species-specific neural inflammation can be induced by profound immune signalling from periphery to brain. Recent advances in transcriptomics offer cost-effective approaches to study this regulation. In a population of captive zebra finch (Taeniopygia guttata), we compare the differential gene expression patterns in lipopolysaccharide (LPS)-triggered peripheral inflammation revealed by RNA-seq and QuantSeq. The RNA-seq approach identified more differentially expressed genes but failed to detect any inflammatory markers. In contrast, QuantSeq results identified specific expression changes in the genes regulating inflammation. Next, we adopted QuantSeq to relate peripheral and brain transcriptomes. We identified subtle changes in the brain gene expression during the peripheral inflammation (e.g. up-regulation in AVD-like and ACOD1 expression) and detected co-structure between the peripheral and brain inflammation. Our results suggest benefits of the 3'end transcriptomics for association studies between peripheral and neural inflammation in genetically heterogeneous models and identify potential targets for the future brain research in birds.
Assuntos
Tentilhões , Aves Canoras , Animais , Aves Canoras/genética , Transcriptoma , RNA Mensageiro/metabolismo , Perfilação da Expressão Gênica , Encéfalo/metabolismo , Inflamação/genética , Inflamação/metabolismo , Tentilhões/genéticaRESUMO
Toll-like receptors (TLRs) form a key component of animal innate immunity, being responsible for recognition of conserved microbial structures. As such, TLRs may be subject to diversifying and balancing selection, which maintains allelic variation both within and between populations. However, most research on TLRs in non-model avian species is focused on bottlenecked populations with depleted genetic variation. Here, we assessed variation at the extracellular domains of three TLR genes (TLR1LA, TLR3, TLR4) across eleven species from two passerine families of buntings (Emberizidae) and finches (Fringillidae), all having large breeding population sizes (millions of individuals). We found extraordinary TLR polymorphism in our study taxa, with >100 alleles detected at TLR1LA and TLR4 across species and high haplotype diversity (>0.75) in several species. Despite recent species divergence, no nucleotide allelic variants were shared between species, suggesting rapid TLR evolution. Higher variation at TLR1LA and TLR4 than TLR3 was associated with a stronger signal of diversifying selection, as measured with nucleotide substitutions rates and the number of positively selected sites (PSS). Structural protein modelling of TLRs showed that some PSS detected within TLR1LA and TLR4 were previously recognized as functionally important sites or were located in their proximity, possibly affecting ligand recognition. Furthermore, we identified PSS responsible for major surface electrostatic charge clustering, which may indicate their adaptive importance. Our study provides compelling evidence for the divergent evolution of TLR genes in buntings and finches and indicates that high TLR variation may be adaptively maintained via diversifying selection acting on functional ligand binding sites.
Assuntos
Tentilhões , Passeriformes , Animais , Receptor 4 Toll-Like/genética , Tentilhões/genética , Ligantes , Receptor 3 Toll-Like/genética , Receptores Toll-Like/genética , Receptores Toll-Like/química , Passeriformes/genética , Evolução MolecularRESUMO
Introduction: Decreasing biotic diversity with increasing latitude is an almost universal macroecological pattern documented for a broad range of taxa, however, there have been few studies focused on changes in gut microbiota (GM) across climatic zones. Methods: Using 16S rRNA amplicon profiling, we analyzed GM variation between temperate (Czechia) and tropical (Cameroon) populations of 99 passerine bird species and assessed GM similarity of temperate species migrating to tropical regions with that of residents/short-distance migrants and tropical residents. Our study also considered the possible influence of diet on GM. Results: We observed no consistent GM diversity differences between tropical and temperate species. In the tropics, GM composition varied substantially between dry and rainy seasons and only a few taxa exhibited consistent differential abundance between tropical and temperate zones, irrespective of migration behavior and seasonal GM changes. During the breeding season, trans-Saharan migrant GM diverged little from species not overwintering in the tropics and did not show higher similarity to tropical passerines than temperate residents/short-distance migrants. Interestingly, GM of two temperate-breeding trans-Saharan migrants sampled in the tropical zone matched that of tropical residents and converged with other temperate species during the breeding season. Diet had a slight effect on GM composition of tropical species, but no effect on GM of temperate hosts. Discussion: Consequently, our results demonstrate extensive passerine GM plasticity, the dominant role of environmental factors in its composition and limited effect of diet.
RESUMO
Retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) are key RNA virus sensors belonging to the RIG-I-like receptor (RLR) family. The activation of the RLR inflammasome leads to the establishment of antiviral state, mainly through interferon-mediated signaling. The evolutionary dynamics of RLRs has been studied mainly in mammals, where rare cases of RLR gene losses were described. By in silico screening of avian genomes, we previously described two independent disruptions of MDA5 in two bird orders. Here, we extend this analysis to approximately 150 avian genomes and report 16 independent evolutionary events of RIG-I inactivation. Interestingly, in almost all cases, these inactivations are coupled with genetic disruptions of RIPLET/RNF135, an ubiquitin ligase RIG-I regulator. Complete absence of any detectable RIG-I sequences is unique to several galliform species, including the domestic chicken (Gallus gallus). We further aimed to determine compensatory evolution of MDA5 in RIG-I-deficient species. While we were unable to show any specific global pattern of adaptive evolution in RIG-I-deficient species, in galliforms, the analyses of positive selection and surface charge distribution support the hypothesis of some compensatory evolution in MDA5 after RIG-I loss. This work highlights the dynamic nature of evolution in bird RNA virus sensors.
Assuntos
Vírus de RNA , RNA , Animais , Antivirais , Aves/virologia , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Imunidade Inata , RNA Helicases , Vírus de RNA/fisiologiaRESUMO
Gut microbiota (GM) often exhibit variation between different host species and co-divergence with hosts' phylogeny. Identifying these patterns is a key for understanding the mechanisms that shaped symbiosis between GM and its hosts. Therefore, both GM-host species specificity and GM-host co-divergence have been investigated by numerous studies. However, most of them neglected a possibility that different groups of bacteria within GM can vary in the tightness of their association with the host. Consequently, unlike most of these studies, we aimed to directly address how the strength of GM-host species specificity and GM-host co-divergence vary across different GM clades. We decomposed GM communities of 52 passerine species (394 individuals), characterized by 16S rRNA amplicon sequence variant (ASV) profiles, into monophyletic Binned Taxonomic units (BTUs). Subsequently, we analyzed strength of host species specificity and correlation with host phylogeny separately for resulting BTUs. We found that most BTUs exhibited significant host-species specificity in their composition. Notably, BTUs exhibiting high host-species specificity comprised bacterial taxa known to impact host's physiology and immune system. However, BTUs rarely displayed significant co-divergence with host phylogeny, suggesting that passerine GM evolution is not shaped primarily through a shared evolutionary history between the host and its gut microbes.
RESUMO
Two key cytosolic receptors belonging to the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) family sense the viral RNA-derived danger signals: RIG-I and melanoma differentiation-associated protein 5 (MDA5). Their activation establishes an antiviral state by downstream signaling that ultimately activates interferon-stimulated genes (ISGs). While in rare cases RIG-I gene loss has been detected in mammalian and avian species, most notably in the chicken, MDA5 pseudogenization has only been detected once in mammals. We have screened over a hundred publicly available avian genome sequences and describe an independent disruption of MDA5 in two unrelated avian lineages, the storks (Ciconiiformes) and the rallids (Gruiformes). The results of our RELAX analysis confirmed the absence of negative selection in the MDA5 pseudogene. In contrast to our prediction, we have shown, using multiple dN/dS-based approaches, that the MDA5 loss does not appear to have resulted in any compensatory evolution in the RIG-I gene, which may partially share its ligand-binding specificity. Together, our results indicate that the MDA5 pseudogenization may have important functional effects on immune responsiveness in these two avian clades.
Assuntos
Proteínas Aviárias/genética , Aves/genética , Proteína DEAD-box 58/genética , Deleção de Genes , Sequência de Aminoácidos , Animais , Proteínas Aviárias/química , Proteínas Aviárias/imunologia , Aves/classificação , Aves/imunologia , Proteína DEAD-box 58/química , Proteína DEAD-box 58/imunologia , Humanos , Imunidade Inata , Modelos Moleculares , Filogenia , Pseudogenes , Alinhamento de SequênciaRESUMO
The first-line effector mechanisms of immune defence, including inflammation and oxidative burst, contribute significantly to host-pathogen resistance. Whether these immune responses undergo age-related changes in birds remains unknown. Here, we tracked selected inflammatory parameters in 54 free-living great tits (Parus major) of known age, captured repeatedly over three consecutive years, with the aims to investigate long-term repeatability and age-dependent changes in cellular oxidative burst responsiveness upon in vitro stimulation with bacterial lipopolysaccharide (LPS), and to identify its relationships with leukotriene B4 (LTB4) levels and haematological traits. In addition, we linked these immunological traits to selected physiological markers (antioxidants and oxidative stress markers). LTB4 levels increased with age and we have shown a similar non-significant tendency also for absolute granulocyte counts, indicating propagating chronic inflammation over the bird's lifetime, consistent with the inflammaging hypothesis. In contrast, cellular oxidative burst followed a quadratic trend of dependency on age with a peak in midlife individuals, in line with the immunosenescence hypothesis. Interestingly, LTB4 levels were positively associated with general oxidative damage, but negatively with antioxidant glutathione peroxidase activity, indicating links to redox balance. This longitudinal study demonstrates the contrasting patterns of age-related changes in background and acute markers of pro-inflammatory immunity contributing to immunosenescence in birds and thus provides basis for interpretation of the tested inflammatory markers in cross-cohort datasets.
Assuntos
Imunossenescência , Envelhecimento , Humanos , Inflamação , Estudos Longitudinais , Estresse OxidativoRESUMO
Proteins encoded by antigen-processing genes (APGs) prepare antigens for presentation by the major histocompatibility complex class I (MHC I) molecules. Coevolution between APGs and MHC I genes has been proposed as the ancestral gnathostome condition. The hypothesis predicts a single highly expressed MHC I gene and tight linkage between APGs and MHC I. In addition, APGs should evolve under positive selection, a consequence of the adaptive evolution in MHC I. The presence of multiple highly expressed MHC I genes in some teleosts, birds, and urodeles appears incompatible with the coevolution hypothesis. Here, we use urodele amphibians to test two key expectations derived from the coevolution hypothesis: 1) the linkage between APGs and MHC I was studied in Lissotriton newts and 2) the evidence for adaptive evolution in APGs was assessed using 42 urodele species comprising 21 genera from seven families. We demonstrated that five APGs (PSMB8, PSMB9, TAP1, TAP2, and TAPBP) are tightly linked (<0.5 cM) to MHC I. Although all APGs showed some codons under episodic positive selection, we did not find a pervasive signal of positive selection expected under the coevolution hypothesis. Gene duplications, putative gene losses, and divergent allelic lineages detected in some APGs demonstrate considerable evolutionary dynamics of APGs in salamanders. Overall, our results indicate that if coevolution between APGs and MHC I occurred in urodeles, it would be more complex than envisaged in the original formulation of the hypothesis.
Assuntos
Proteínas de Anfíbios/genética , Apresentação de Antígeno/genética , Evolução Molecular , Genes MHC Classe I , Urodelos/genética , Proteínas de Anfíbios/química , Proteínas de Anfíbios/classificação , Animais , Duplicação Gênica , Ligação Genética , Urodelos/imunologiaRESUMO
Urban heavy metal pollution can impair the health of humans and other organisms inhabiting cities. While birds are suggested as one of the appropriate bioindicators for essential and non-essential trace element monitoring, the process of particular elements' accumulation in blood and its possible adverse health effects during ageing of individuals remain unexplored. We have investigated lifetime changes in blood lead (Pb), cadmium (Cd), arsenic (As) and zinc (Zn) concentrations and searched for links to health-related traits in sub-urban free-living great tit (Parus major) population monitored over a long period of time. The blood As concentrations were under the limit of detection in most samples. The blood Pb levels showed a non-linear relationship to individuals age, where the highest Pb concentrations were measured in nestlings and in a very small group of highly senescent birds (over 7â¯years old), while no clear trend was observed for the majority of the adult age stages. No age-related patterns were found for blood Cd or Zn concentrations. The positive relationship between date of capture and blood Cd and Zn levels may reflect seasonal changes in diet composition. We did not reveal any anaemia-like conditions (decreased total erythrocyte count or increased immature erythrocyte count) in relation to blood heavy metal concentrations in the investigated birds. Total leukocyte counts, heterophil/lymphocyte (H/L) ratio and total heterophil and lymphocyte counts increased with increasing Pb, Cd and Zn concentrations in blood. This study demonstrates the suitability of avian blood for actual heavy metal spatial and temporal biomonitoring even in situations when the precise age of the individuals remains unknown.
Assuntos
Monitoramento Ambiental , Metais Pesados/análise , Adulto , Animais , Aves , Criança , Cidades , Poluição Ambiental/análise , HumanosRESUMO
The gastrointestinal tract of vertebrates is inhabited by diverse bacterial communities that induce marked effects on the host physiology and health status. The composition of the gastrointestinal microbiota is characterized by pronounced taxonomic and functional variability among different regions of the vertebrate gastrointestinal tract. Despite the relatively solid knowledge on the among-region variations of the gastrointestinal microbiota in model mammalian species, there are only a few studies concerning among-region variations of the gastrointestinal microbiota in free-living non-mammalian vertebrate taxa. We used Illumina MiSeq sequencing of bacterial 16S rRNA amplicons to compare the diversity as well as taxonomic composition of bacterial communities in proximal vs. distal parts of the gastrointestinal tract (represented by oral swabs and faecal samples, respectively) in a wild passerine bird, the great tit (Parus major). The diversity of the oral microbiota was significantly higher compared to the faecal microbiota, whereas interindividual variation was higher in faecal than in oral samples. We also observed a pronounced difference in taxonomic content between the oral and faecal microbiota. Bacteria belonging to the phyla Proteobacteria, Firmicutes and Actinobacteria typically dominated in both oral and faecal samples. A high abundance of bacteria belonging to Tenericutes was observed only in faecal samples. Surprisingly, we found only a slight correlation between the faecal and oral microbiota at the within-individual level, suggesting that the microbial composition in these body sites is shaped by independent regulatory processes. Given the independence of these two communities at the individual level, we propose that simultaneous sampling of the faecal and oral microbiota will extend our understanding of host vs. microbiota interactions in wild populations.
Assuntos
Fezes/microbiologia , Microbiota , Boca/microbiologia , Passeriformes/microbiologia , Animais , Biologia Computacional , RNA Ribossômico 16S/genéticaRESUMO
Immunity exhibits extraordinarily high levels of variation. Evolution of the immune system in response to host-pathogen interactions in particular ecological contexts appears to be frequently associated with diversifying selection increasing the genetic variability. Many studies have documented that immunologically relevant polymorphism observed today may be tens of millions years old and may predate the emergence of present species. This pattern can be explained by the concept of trans-species polymorphism (TSP) predicting the maintenance and sharing of favourable functionally important alleles of immune-related genes between species due to ongoing balancing selection. Despite the generality of this concept explaining the long-lasting adaptive variation inherited from ancestors, current research in TSP has vastly focused only on major histocompatibility complex (MHC). In this review we summarise the evidence available on TSP in human and animal immune genes to reveal that TSP is not a MHC-specific evolutionary pattern. Further research should clearly pay more attention to the investigation of TSP in innate immune genes and especially pattern recognition receptors which are promising candidates for this type of evolution. More effort should also be made to distinguish TSP from convergent evolution and adaptive introgression. Identification of balanced TSP variants may represent an accurate approach in evolutionary medicine to recognise disease-resistance alleles.